Skip to content

Latest commit

 

History

History
89 lines (68 loc) · 2.5 KB

llama.cpp_pc.md

File metadata and controls

89 lines (68 loc) · 2.5 KB

部署llama.cpp到PC端

支持设备

  • Linux
  • macOS

步骤1:下载llama.cpp

通过Git克隆llama.cpp仓库:

git clone https://github.com/ggerganov/llama.cpp

步骤2:编译llama.cpp

进入llama.cpp目录并编译:

cd llama.cpp
make

步骤3:获取MiniCPM的gguf模型

方法1:直接下载

方法2:自行转换MiniCPM模型为gguf格式

  1. 创建模型存储路径

    cd llama.cpp/models
    mkdir Minicpm
  2. 下载MiniCPM pytorch模型 下载MiniCPM pytorch模型的所有文件,并保存到llama.cpp/models/Minicpm目录下。

  3. 修改转换脚本 检查llama.cpp/convert-hf-to-gguf.py文件中的_reverse_hf_permute函数,如果发现如下代码:

    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
        if n_kv_head is not None and n_head != n_kv_head:
            n_head //= n_kv_head

    替换为:

    @staticmethod
    def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
        if n_head_kv is not None and n_head != n_head_kv:
            n_head = n_head_kv
        return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
                .swapaxes(1, 2)
                .reshape(weights.shape))
    
    def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
        if n_kv_head is not None and n_head != n_kv_head:
            n_head //= n_kv_head
  4. 安装依赖并转换模型

    python3 -m pip install -r requirements.txt
    python3 convert-hf-to-gguf.py models/Minicpm/

    完成以上步骤后,llama.cpp/models/Minicpm目录下将会有一个名为ggml-model-f16.gguf的模型文件。

步骤4:量化fp16的gguf文件

若下载的模型已经是量化格式,则跳过此步骤。

./llama-quantize ./models/Minicpm/ggml-model-f16.gguf ./models/Minicpm/ggml-model-Q4_K_M.gguf Q4_K_M

如果找不到llama-quantize,可以尝试重新编译:

cd llama.cpp
make llama-quantize

步骤5:开始推理

使用量化后的模型进行推理:

./llama-cli -m ./models/Minicpm/ggml-model-Q4_K_M.gguf -n 128 --prompt "<用户>你知道openmbmb么<AI>"