forked from astropy/astropy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
.travis.yml
223 lines (193 loc) · 8.3 KB
/
.travis.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# We set the language to c because python isn't supported on the MacOS X nodes
# on Travis. However, the language ends up being irrelevant anyway, since we
# install Python ourselves using conda.
language: c
compiler: gcc
# Cache can be cleared from the travis settings menu, see docs currently at
# https://docs.travis-ci.com/user/caching#Clearing-Caches
cache:
- ccache
os:
- linux
stage: Comprehensive tests
# Setting sudo to false opts in to Travis-CI container-based builds.
sudo: false
# The apt packages below are needed for sphinx builds, which can no longer
# be installed with sudo apt-get.
addons:
apt:
packages:
- graphviz
- language-pack-de
env:
global:
# Set defaults to avoid repeating in most cases
- PYTHON_VERSION=3.6
- NUMPY_VERSION=stable
- MAIN_CMD='python setup.py'
- CONDA_DEPENDENCIES='Cython jinja2'
- CONDA_ALL_DEPENDENCIES='Cython jinja2 scipy h5py matplotlib pyyaml pandas pytz html5lib beautifulsoup4 ipython mpmath bleach bottleneck'
- DEV_PIP_DEP='asdf>=2.3 Cython jinja2 scipy h5py matplotlib pyyaml scikit-image pandas pytz html5lib beautifulsoup4 ipython mpmath bleach bottleneck'
- ASDF_PIP_DEP='asdf>=2.3'
- SETUP_XVFB=True
- EVENT_TYPE='push pull_request'
- SETUP_CMD='test'
- INSTALL_WITH_PIP=False
- EXTRAS_INSTALL=""
# PEP8 errors/warnings:
# E101 - mix of tabs and spaces
# W191 - use of tabs
# W291 - trailing whitespace
# W292 - no newline at end of file
# W293 - trailing whitespace
# W391 - blank line at end of file
# E111 - 4 spaces per indentation level
# E112 - 4 spaces per indentation level
# E113 - 4 spaces per indentation level
# E301 - expected 1 blank line, found 0
# E302 - expected 2 blank lines, found 0
# E303 - too many blank lines (3)
# E304 - blank lines found after function decorator
# E305 - expected 2 blank lines after class or function definition
# E306 - expected 1 blank line before a nested definition
# E502 - the backslash is redundant between brackets
# E722 - do not use bare except
# E901 - SyntaxError or IndentationError
# E902 - IOError
# E999: SyntaxError -- failed to compile a file into an Abstract Syntax Tree
# # F821: undefined name # Note: Removed for now because of heavy use of units.si
# F822: undefined name in __all__
# F823: local variable name referenced before assignment
- FLAKE8_OPT="--select=E101,W191,W291,W292,W293,W391,E111,E112,E113,E30,E502,E722,E901,E902,E999,F822,F823"
stages:
# Do the style check and a single test job, don't proceed if it fails
- name: Initial tests
# Do the rest of the tests
- name: Comprehensive tests
- name: Final tests
- name: Cron tests
if: type = cron
matrix:
# Don't wait for allowed failures
fast_finish: true
include:
# Try MacOS X. Use a slightly old numpy version to help test against
# all supported numpy versions.
- os: osx
stage: Cron tests
env: SETUP_CMD='test --remote-data=astropy'
CONDA_DEPENDENCIES="$CONDA_ALL_DEPENDENCIES clang"
PIP_DEPENDENCIES="scikit-image jplephem $ASDF_PIP_DEP"
CCOMPILER=clang
EVENT_TYPE='cron'
# Try all python versions and Numpy versions. Since we can assume that
# the Numpy developers have taken care of testing Numpy with different
# versions of Python, we can vary Python and Numpy versions at the same
# time.
- os: linux
env: PYTHON_VERSION=3.6 NUMPY_VERSION=1.13
INSTALL_CMD='python setup.py build_ext --inplace'
PIP_DEPENDENCIES='pytest-astropy'
TEST_CMD='pytest --open-files --doctest-rst'
script:
- $INSTALL_CMD
- $TEST_CMD
# Now try with all optional dependencies. We also include the --readonly
# flag to make sure no files are being written to the temporary install
# location during testing. We also use this build to make sure that the
# dependencies get correctly installed with pip.
- os: linux
env: SETUP_CMD='test --remote-data=astropy --readonly'
LC_CTYPE=C.ascii LC_ALL=C
PIP_DEPENDENCIES="" CONDA_DEPENDENCIES=""
INSTALL_WITH_PIP=True
EXTRAS_INSTALL="test,all"
- os: linux
stage: Initial tests
env: PYTHON_VERSION=3.7 CONDA_DEPENDENCIES=$CONDA_ALL_DEPENDENCIES
PIP_DEPENDENCIES="scikit-image $ASDF_PIP_DEP"
SETUP_CMD='test -a "--durations=50"'
compiler: clang
# Full tests with coverage checks.
- os: linux
env: SETUP_CMD='test --coverage --remote-data=astropy --readonly'
CONDA_DEPENDENCIES=$CONDA_ALL_DEPENDENCIES
PIP_DEPENDENCIES="scikit-image codecov objgraph jplephem bintrees sortedcontainers $ASDF_PIP_DEP"
LC_CTYPE=C.ascii LC_ALL=C
CFLAGS='--coverage -fno-inline-functions -O0'
MATPLOTLIB_VERSION=2.1
EVENT_TYPE='push pull_request cron'
# Try on Windows
- os: windows
stage: Final tests
env: PYTHON_VERSION=3.7 SETUP_CMD='test --readonly'
CONDA_DEPENDENCIES=""
PIP_DEPENDENCIES="Cython scipy h5py beautifulsoup4 html5lib jinja2 pyyaml matplotlib scikit-image pytz pandas objgraph asdf"
# Do a PEP8/pyflakes test with flake8
- os: linux
stage: Initial tests
env: MAIN_CMD="flake8 astropy --count $FLAKE8_OPT" SETUP_CMD=''
# Try developer version of Numpy with optional dependencies and also
# run all remote tests. Since both cases will be potentially
# unstable, we combine them into a single unstable build that we can
# mark as an allowed failure below.
- os: linux
stage: Final tests
env: PYTHON_VERSION=3.7 NUMPY_VERSION=dev SETUP_CMD='test --remote-data'
CONDA_DEPENDENCIES=''
PIP_DEPENDENCIES=$DEV_PIP_DEP
MATPLOTLIB_VERSION=dev
# We check numpy-dev also in a job that only runs from cron, so that
# we can spot issues sooner. We do not use remote data here, since
# that gives too many false positives due to URL timeouts.
# We also install all dependencies via pip here so we pick up the latest
# releases.
- os: linux
stage: Cron tests
env: NUMPY_VERSION=dev MATPLOTLIB_VERSION=dev EVENT_TYPE='cron'
CONDA_DEPENDENCIES=''
PIP_DEPENDENCIES=$DEV_PIP_DEP
# Run documentation link check in a cron job.
# Was originally in CircleCI doc build but links are too flaky, so
# we moved it here instead.
- os: linux
stage: Cron tests
env: SETUP_CMD='build_docs -b linkcheck'
PIP_DEPENDENCIES="" CONDA_DEPENDENCIES=""
INSTALL_WITH_PIP=True
EXTRAS_INSTALL="docs"
allow_failures:
- os: linux
stage: Final tests
env: PYTHON_VERSION=3.7 NUMPY_VERSION=dev SETUP_CMD='test --remote-data'
CONDA_DEPENDENCIES=''
PIP_DEPENDENCIES=$DEV_PIP_DEP
MATPLOTLIB_VERSION=dev
before_install:
# We need to use CCOMPILER otherwise Travis overwrites CC if we define it
# in env: above.
- if [ ! -z $CCOMPILER ]; then
export CC=$CCOMPILER;
fi
# Check CC variable
- echo $CC
# Write configuration items to standard location to make sure they are
# ignored (the tests will fail if not)
- mkdir -p $HOME/.astropy/config/
- printf "unicode_output = True\nmax_width = 500" > $HOME/.astropy/config/astropy.cfg
install:
- git clone git://github.com/astropy/ci-helpers.git
- source ci-helpers/travis/setup_conda.sh
- if [[ $INSTALL_WITH_PIP == True ]]; then
if [ -z $EXTRAS_INSTALL ]; then
pip install -e .;
else
pip install -e .[$EXTRAS_INSTALL];
fi
fi
script:
- $MAIN_CMD $SETUP_CMD
after_success:
- if [[ $SETUP_CMD == *--coverage* ]]; then
codecov --gcov-glob "*cextern*";
fi