-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.py
35 lines (29 loc) · 1.3 KB
/
index.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import pandas as pd
import argparse
from constants import NETWORKS_TO_ID, START_DATE, END_DATE, BOTS
from utils import get_alerts, find_matching_hashes, clean_files
def process_file(csv_file_path):
df = clean_files(csv_file_path)
print(f"Loaded {len(df)} rows from {csv_file_path}")
# Create separate DataFrames for each unique value in 'Network' column
existing_networks = df['Network'].unique()
dfs = {value: df[df['Network'] == value].copy()
for value in existing_networks}
network_to_alerts = {}
for nets in existing_networks:
network_to_alerts[nets] = get_alerts(
START_DATE, END_DATE, NETWORKS_TO_ID[nets], BOTS)
combined_dfs = []
# Loop through unique_nets and find_matching_hashes for each net
for nets in existing_networks:
combined_dfs.append(find_matching_hashes(
dfs[nets], network_to_alerts[nets]))
# Concatenate the list of DataFrames into a single DataFrame
merged_df = pd.concat(combined_dfs, ignore_index=True)
merged_df.to_csv('Final_data.csv')
print("Created Final_data.csv")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process a CSV file.')
parser.add_argument('csv_file', help='Path to the CSV file')
args = parser.parse_args()
process_file(args.csv_file)