diff --git a/notebooks/demo.ipynb b/notebooks/demo.ipynb index 8c95495..ce0b197 100644 --- a/notebooks/demo.ipynb +++ b/notebooks/demo.ipynb @@ -30,241 +30,7 @@ "- Vertical velocity (from a flight model)" ] }, - { - "cell_type": "code", - "execution_count": 3, - "id": "f37f8af1-62b5-4139-9a96-d55142a54e2a", - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "from glidertest import fetchers, tools, plots\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import matplotlib\n", - "matplotlib.use('agg') # use agg backend to prevent creating plot windows during tests\n", - "\n", - "def test_plots(start_prof=0, end_prof=100):\n", - " ds = fetchers.load_sample_dataset()\n", - " ds = ds.drop_vars(['DENSITY'])\n", - " fig, ax = plots.plot_basic_vars(ds,start_prof=start_prof, end_prof=end_prof)\n", - " assert ax[0].get_ylabel() == 'Depth (m)'\n", - " assert ax[0].get_xlabel() == f'Average Temperature [C] \\nbetween profile {start_prof} and {end_prof}'\n", - "\n", - "\n", - "def test_up_down_bias(v_res=1, xlabel='Salinity'):\n", - " ds = fetchers.load_sample_dataset()\n", - " fig, ax = plt.subplots()\n", - " df = tools.quant_updown_bias(ds, var='PSAL', v_res=v_res)\n", - " plots.plot_updown_bias(df, ax, xlabel=xlabel)\n", - " lims = np.abs(df.dc)\n", - " assert ax.get_xlim() == (-np.nanpercentile(lims, 99.5), np.nanpercentile(lims, 99.5))\n", - " assert ax.get_ylim() == (df.depth.max() + 1, -df.depth.max() / 30)\n", - " assert ax.get_xlabel() == xlabel\n", - " # check without passing axis\n", - " new_fig, new_ax = plots.plot_updown_bias(df, xlabel=xlabel)\n", - " assert new_ax.get_xlim() == (-np.nanpercentile(lims, 99.5), np.nanpercentile(lims, 99.5))\n", - " assert new_ax.get_ylim() == (df.depth.max() + 1, -df.depth.max() / 30)\n", - " assert new_ax.get_xlabel() == xlabel\n", - "\n", - "\n", - "def test_chl(var1='CHLA', var2='BBP700'):\n", - " ds = fetchers.load_sample_dataset()\n", - " ax = plots.process_optics_assess(ds, var=var1)\n", - " assert ax.get_ylabel() == var1\n", - " ax = plots.process_optics_assess(ds, var=var2)\n", - " assert ax.get_ylabel() == var2\n", - " with pytest.raises(KeyError) as e:\n", - " plots.process_optics_assess(ds, var='nonexistent_variable')\n", - "\n", - "\n", - "def test_quench_sequence(xlabel='Temperature [C]',ylim=45):\n", - " ds = fetchers.load_sample_dataset()\n", - " if not \"TIME\" in ds.indexes.keys():\n", - " ds = ds.set_xindex('TIME')\n", - " fig, ax = plt.subplots()\n", - " plots.plot_quench_assess(ds, 'CHLA', ax,ylim=ylim)\n", - " assert ax.get_ylabel() == 'Depth [m]'\n", - " assert ax.get_ylim() == (ylim, -ylim / 30)\n", - " \n", - " dayT, nightT = tools.compute_daynight_avg(ds, sel_var='TEMP')\n", - " fig, ax = plots.plot_daynight_avg(dayT, nightT,xlabel=xlabel) \n", - " assert ax.get_ylabel() == 'Depth [m]'\n", - " assert ax.get_xlabel() == xlabel\n", - "\n", - "\n", - "def test_temporal_drift(var='DOXY'):\n", - " ds = fetchers.load_sample_dataset()\n", - " fig, ax = plt.subplots(1, 2)\n", - " plots.check_temporal_drift(ds,var, ax)\n", - " assert ax[1].get_ylabel() == 'Depth (m)'\n", - " assert ax[0].get_ylabel() == var\n", - " assert ax[1].get_xlim() == (np.nanpercentile(ds[var], 0.01), np.nanpercentile(ds[var], 99.99))\n", - " plots.check_temporal_drift(ds,'CHLA')\n", - "\n", - "\n", - "def test_profile_check():\n", - " ds = fetchers.load_sample_dataset()\n", - " tools.check_monotony(ds.PROFILE_NUMBER)\n", - " fig, ax = plots.plot_prof_monotony(ds)\n", - " assert ax[0].get_ylabel() == 'Profile number'\n", - " assert ax[1].get_ylabel() == 'Depth (m)'\n", - " duration = tools.compute_prof_duration(ds)\n", - " rolling_mean, overtime = tools.find_outlier_duration(duration, rolling=20, std=2)\n", - " fig, ax = plots.plot_outlier_duration(ds, rolling_mean, overtime, std = 2)\n", - " assert ax[0].get_ylabel() == 'Profile duration (min)'\n", - " assert ax[0].get_xlabel() == 'Profile number'\n", - " assert ax[1].get_ylabel() == 'Depth (m)'\n", - "\n", - "def test_basic_statistics():\n", - " ds = fetchers.load_sample_dataset()\n", - " plots.plot_glider_track(ds)\n", - " plots.plot_grid_spacing(ds)\n", - " plots.plot_ts(ds)\n", - "\n", - "\n", - "def test_vert_vel():\n", - " ds_sg014 = fetchers.load_sample_dataset(dataset_name=\"sg014_20040924T182454_delayed_subset.nc\")\n", - " ds_sg014 = tools.calc_w_meas(ds_sg014)\n", - " ds_sg014 = tools.calc_w_sw(ds_sg014)\n", - " plots.plot_vertical_speeds_with_histograms(ds_sg014)\n", - " ds_dives = ds_sg014.sel(N_MEASUREMENTS=ds_sg014.PHASE == 2)\n", - " ds_climbs = ds_sg014.sel(N_MEASUREMENTS=ds_sg014.PHASE == 1)\n", - " ds_out_dives = tools.quant_binavg(ds_dives, var = 'VERT_CURR_MODEL', dz=10)\n", - " ds_out_climbs = tools.quant_binavg(ds_climbs, var = 'VERT_CURR_MODEL', dz=10)\n", - " plots.plot_combined_velocity_profiles(ds_out_dives, ds_out_climbs)\n", - " # extra tests for ramsey calculations of DEPTH_Z\n", - " ds_climbs = ds_climbs.drop_vars(['DEPTH_Z'])\n", - " tools.quant_binavg(ds_climbs, var='VERT_CURR_MODEL', dz=10)\n", - " ds_climbs = ds_climbs.drop_vars(['LATITUDE'])\n", - " with pytest.raises(KeyError) as e:\n", - " tools.quant_binavg(ds_climbs, var='VERT_CURR_MODEL', dz=10)\n", - "def test_hyst_plot(var='DOXY'):\n", - " ds = fetchers.load_sample_dataset()\n", - " fig, ax = plots.plot_hysteresis(ds, var=var, v_res=1, perct_err=2, ax=None)\n", - " assert ax[3].get_ylabel() == 'Depth (m)'\n", - " assert ax[0].get_ylabel() == 'Depth (m)'\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "e48a9acf-2bce-44ca-88cc-6c36fdcbe50f", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The thermocline, halocline and pycnocline are located at respectively [60.1], [60.1] and [60.1]m as shown in the plots as well\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\u241346\\uni_hamburg\\glidertest\\glidertest\\plots.py:157: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", - " plt.show()\n", - "C:\\Users\\u241346\\uni_hamburg\\glidertest\\glidertest\\plots.py:59: UserWarning: FigureCanvasAgg is non-interactive, and thus cannot be shown\n", - " plt.show()\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.2% of scaled CHLA data is negative, consider recalibrating data\n" - ] - } - ], - "source": [ - "test_plots(start_prof=0, end_prof=100)\n", - "test_up_down_bias(v_res=1, xlabel='Salinity')\n", - "test_chl(var1='CHLA', var2='BBP700')\n", - "test_quench_sequence(xlabel='Temperature [C]',ylim=45)\n", - "test_temporal_drift(var='DOXY')\n", - "test_profile_check()\n", - "test_basic_statistics()\n", - "test_vert_vel()\n", - "test_hyst_plot(var='DOXY')\n" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "b1a65246-6a20-4f93-8db7-bcaf53e7c3a2", - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "sys.path.append('C:\\\\Users\\\\u241346\\\\uni_hamburg\\\\glidertest')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "132a5005-d805-4ab7-8869-ea5579fcdd1f", - "metadata": {}, - "outputs": [], - "source": [ - "import pytest\n", - "from glidertest import fetchers, tools\n", - "import math\n", - "import numpy as np\n", - "import matplotlib\n", - "matplotlib.use('agg') # use agg backend to prevent creating plot windows during tests\n", - "\n", - "\n", - "def test_updown_bias(v_res=1):\n", - " ds = fetchers.load_sample_dataset()\n", - " df = tools.quant_updown_bias(ds, var='PSAL', v_res=v_res)\n", - " bins = np.unique(np.round(ds.DEPTH,0))\n", - " ncell = math.ceil(len(bins)/v_res)\n", - " assert len(df) == ncell\n", - "\n", - "def test_daynight():\n", - " ds = fetchers.load_sample_dataset()\n", - " if not \"TIME\" in ds.indexes.keys():\n", - " ds = ds.set_xindex('TIME')\n", - "\n", - " dayT, nightT = tools.compute_daynight_avg(ds, sel_var='TEMP')\n", - " assert len(nightT.dat.dropna()) > 0\n", - " assert len(dayT.dat.dropna()) > 0\n", - "\n", - "def test_check_monotony():\n", - " ds = fetchers.load_sample_dataset()\n", - " profile_number_monotony = tools.check_monotony(ds.PROFILE_NUMBER)\n", - " temperature_monotony = tools.check_monotony(ds.TEMP)\n", - " assert profile_number_monotony\n", - " assert not temperature_monotony\n", - " duration = tools.compute_prof_duration(ds)\n", - " rolling_mean, overtime = tools.find_outlier_duration(duration, rolling=20, std=2)\n", - "\n", - "\n", - "def test_vert_vel():\n", - " ds_sg014 = fetchers.load_sample_dataset(dataset_name=\"sg014_20040924T182454_delayed_subset.nc\")\n", - " ds_sg014 = ds_sg014.drop_vars(\"DEPTH_Z\")\n", - " ds_sg014 = tools.calc_w_meas(ds_sg014)\n", - " ds_sg014 = tools.calc_w_sw(ds_sg014)\n", - "\n", - " ds_dives = ds_sg014.sel(N_MEASUREMENTS=ds_sg014.PHASE == 2)\n", - " ds_climbs = ds_sg014.sel(N_MEASUREMENTS=ds_sg014.PHASE == 1)\n", - " tools.quant_binavg(ds_dives, var = 'VERT_CURR_MODEL', dz=10)\n", - " \n", - " # extra tests for ramsey calculations of DEPTH_Z\n", - " ds_climbs = ds_climbs.drop_vars(['DEPTH_Z'])\n", - " tools.quant_binavg(ds_climbs, var='VERT_CURR_MODEL', dz=10)\n", - " ds_climbs = ds_climbs.drop_vars(['LATITUDE'])\n", - " with pytest.raises(KeyError) as e:\n", - " tools.quant_binavg(ds_climbs, var='VERT_CURR_MODEL', dz=10)\n", - "def test_hyst():\n", - " ds = fetchers.load_sample_dataset()\n", - " df_h = tools.quant_hysteresis(ds, var = 'DOXY', v_res = 1)\n", - " df, diff, err, rms = tools.compute_hyst_stat(ds, var='DOXY', v_res=1)\n", - " assert np.array_equal(df_h.dropna(), df.dropna())\n", - " assert len(diff) == len(err)" - ] - }, + { "cell_type": "code", "execution_count": null,