forked from songqi-github/AttaNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate.py
170 lines (148 loc) · 5.6 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/python
# -*- encoding: utf-8 -*-
from AttaNet import AttaNet
from logger import setup_logger
from cityscapes import CityScapes
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data import DataLoader
import time
import math
import logging
import numpy as np
from tqdm import tqdm
import os
import os.path as osp
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class MscEval(object):
def __init__(self, model, dataloader, scales=[1.0],
n_classes=19, lb_ignore=255, cropsize=1024, flip=True, *args, **kwargs):
self.scales = scales
self.n_classes = n_classes
self.lb_ignore = lb_ignore
self.flip = flip
self.cropsize = cropsize
self.dl = dataloader
self.net = model
def pad_tensor(self, inten, size):
N, C, H, W = inten.size()
outten = torch.zeros(N, C, size[0], size[1]).cuda()
outten.requires_grad = False
margin_h, margin_w = size[0]-H, size[1]-W
hst, hed = margin_h//2, margin_h//2+H
wst, wed = margin_w//2, margin_w//2+W
outten[:, :, hst:hed, wst:wed] = inten
return outten, [hst, hed, wst, wed]
def eval_chip(self, crop):
with torch.no_grad():
out = self.net(crop)[0]
prob = F.softmax(out, 1)
if self.flip:
crop = torch.flip(crop, dims=(3,))
out = self.net(crop)[0]
out = torch.flip(out, dims=(3,))
prob += F.softmax(out, 1)
prob = torch.exp(prob)
return prob
def crop_eval(self, im):
cropsize = self.cropsize
stride_rate = 5/6.
N, C, H, W = im.size()
long_size, short_size = (H, W) if H > W else (W, H)
if long_size < cropsize:
im, indices = self.pad_tensor(im, (cropsize, cropsize))
prob = self.eval_chip(im)
prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]]
else:
stride = math.ceil(cropsize*stride_rate)
if short_size < cropsize:
if H < W:
im, indices = self.pad_tensor(im, (cropsize, W))
else:
im, indices = self.pad_tensor(im, (H, cropsize))
N, C, H, W = im.size()
n_x = math.ceil((W-cropsize)/stride)+1
n_y = math.ceil((H-cropsize)/stride)+1
prob = torch.zeros(N, self.n_classes, H, W).cuda()
prob.requires_grad = False
for iy in range(n_y):
for ix in range(n_x):
hed, wed = min(H, stride*iy+cropsize), min(W, stride*ix+cropsize)
hst, wst = hed-cropsize, wed-cropsize
chip = im[:, :, hst:hed, wst:wed]
prob_chip = self.eval_chip(chip)
prob[:, :, hst:hed, wst:wed] += prob_chip
if short_size < cropsize:
prob = prob[:, :, indices[0]:indices[1], indices[2]:indices[3]]
return prob
def scale_crop_eval(self, im, scale):
N, C, H, W = im.size()
new_hw = [int(H*scale), int(W*scale)]
im = F.interpolate(im, new_hw, mode='bilinear', align_corners=True)
prob = self.crop_eval(im)
prob = F.interpolate(prob, (H, W), mode='bilinear', align_corners=True)
return prob
def compute_hist(self, pred, lb):
n_classes = self.n_classes
ignore_idx = self.lb_ignore
keep = np.logical_not(lb==ignore_idx)
merge = pred[keep] * n_classes + lb[keep]
hist = np.bincount(merge, minlength=n_classes**2)
hist = hist.reshape((n_classes, n_classes))
return hist
def evaluate(self):
n_classes = self.n_classes
hist = np.zeros((n_classes, n_classes), dtype=np.float32)
dloader = tqdm(self.dl)
if dist.is_initialized() and not dist.get_rank() == 0:
dloader = self.dl
for i, (imgs, label) in enumerate(dloader):
N, _, H, W = label.shape
probs = torch.zeros((N, self.n_classes, H, W))
probs.requires_grad = False
imgs = imgs.cuda()
for sc in self.scales:
prob = self.scale_crop_eval(imgs, sc)
probs += prob.detach().cpu()
probs = probs.data.numpy()
preds = np.argmax(probs, axis=1)
hist_once = self.compute_hist(preds, label.data.numpy().squeeze(1))
hist = hist + hist_once
IOUs = np.diag(hist) / (np.sum(hist, axis=0)+np.sum(hist, axis=1)-np.diag(hist))
mIOU = np.mean(IOUs)
return IOUs, mIOU
def evaluate(respth='./snapshots', dspth='../data/cityscapes'):
logger = logging.getLogger()
logger.info('\n')
logger.info('===='*20)
logger.info('evaluating the model ...\n')
logger.info('setup and restore model')
n_classes = 19
net = AttaNet(n_classes=n_classes)
save_pth = osp.join(respth, 'model_final.pth')
state_dict = torch.load(save_pth, map_location=torch.device('cpu'))
net.load_state_dict(state_dict)
net.cuda()
net.eval()
# dataset
batchsize = 5
n_workers = 2
dsval = CityScapes(dspth, mode='val')
dl = DataLoader(dsval,
batch_size=batchsize,
shuffle=False,
num_workers=n_workers,
drop_last=False)
# evaluator
logger.info('compute the mIOU')
evaluator = MscEval(net, dl)
# eval
IOUs, mIOU = evaluator.evaluate()
print(IOUs)
print(mIOU)
logger.info('mIOU is: {:.6f}'.format(mIOU))
if __name__ == "__main__":
setup_logger('./res')
evaluate()