diff --git a/docs/Introduction.rst b/docs/Introduction.rst index 0036420..2a1be9c 100644 --- a/docs/Introduction.rst +++ b/docs/Introduction.rst @@ -32,7 +32,7 @@ Several methods exist for modeling noise in single-cell omics data. In general, +-------------------------------------------+-------------------------------------------+ | Background noise | Stachastic noise | +========+===============+==================+========+===============+==================+ -| CellBender [Fleming2019]_ | scVI [Lopez2018]_ | +| CellBender [Fleming2023]_ | scVI [Lopez2018]_ | +-------------------------------------------+-------------------------------------------+ | SoupX [Young2020]_ | DCA [Eraslan2019]_ | +-------------------------------------------+-------------------------------------------+ diff --git a/docs/Reference.rst b/docs/Reference.rst index 263dc22..2726bb4 100644 --- a/docs/Reference.rst +++ b/docs/Reference.rst @@ -9,9 +9,9 @@ Reference `Single-cell RNA-seq denoising using a deep count autoencoder `__, Nature Communications. -.. [Fleming2019] Fleming *et al.* (2019), - `CellBender remove-background: a deep generative model for unsupervised removal of background noise from scRNA-seq datasets `__, - bioRxiv. +.. [Fleming2023] Fleming *et al.* (2023), + `Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender `__, + Nature Methods. .. [Gayoso2021] Gayoso *et al.* (2021), `Joint probabilistic modeling of single-cell multi-omic data with totalVI `__, diff --git a/scar/main/_setup.py b/scar/main/_setup.py index 73deb1a..7fe6d25 100644 --- a/scar/main/_setup.py +++ b/scar/main/_setup.py @@ -104,8 +104,12 @@ def setup_anndata( if sample is not None: sample = int(sample) + setup_logger.info( + f"Randomly sample {sample:d} droplets from {raw_adata.shape[0]:d} droplets." + ) else: sample = raw_adata.shape[0] + setup_logger.info(f"Use all {sample:d} droplets.") # check n_batch if n_batch is None: @@ -124,9 +128,6 @@ def setup_anndata( ) raw_adata = raw_adata[idx] - setup_logger.info( - f"Randomly sample {sample:d} droplets from {raw_adata.shape[0]:d} droplets." - ) # initial estimation of ambient profile, will be update ambient_prof = raw_adata.X.sum(axis=0) / raw_adata.X.sum()