-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot-relaxation.py
113 lines (88 loc) · 3.75 KB
/
plot-relaxation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import matplotlib.pyplot as plt
# Load data
pop_subOhmic = np.load("Leggett_s=0.5_A=0.10_cutoff10.npy")
pop_ohmic = np.load("Leggett_s=1.0_A=0.10_cutoff10.npy")
pop_superOhmic = np.load("Leggett_s=2.0_A=0.10_cutoff10.npy")
# polarization function based on the relaxation theory
def polarization(t, η, Δ):
pz = np.exp(-t * η / 2) * (
np.cos(t * np.sqrt(4 * Δ**2 - η**2) / 2) +
η / np.sqrt(4 * Δ**2 - η**2) * np.sin(t * np.sqrt(4 * Δ**2 - η**2) / 2)
)
return 0.5 * (pz + 1)
# define parameters
def ohmic(w, A, s, ν_c):
return A * np.power(np.abs(w), s, dtype=float) * np.power(ν_c, 1-s, dtype=float) * np.exp(-np.abs(w) / ν_c) * np.sign(w)
ωc = 10
Δ = 1
β = 2.3741537354439313
sim_time = 12.8 * 2*np.pi
steps = 1280
tlist = np.linspace(0, sim_time, steps+1)
fig, ax = plt.subplots(1, 3, figsize=(12,9/3))
pops = [pop_subOhmic, pop_ohmic, pop_superOhmic]
for i, s in enumerate([0.5, 1.0, 2.0]):
η = 0.5 * ohmic(Δ, A=0.1, s=s, ν_c=ωc) / np.tanh(β * Δ / 2)
ax[i].plot(tlist/2/np.pi, pops[i], '-', label='DMRG')
ax[i].plot(tlist/2/np.pi, polarization(tlist, η, Δ), '--', label='Relaxation theory')
ax[i].set_xlabel('t')
ax[i].set_ylabel('Donor pop. s= {}'.format(s))
ax[i].set_title('s = {}'.format(s))
ax[i].legend()
# Save the figure
plt.savefig("relaxation.png", dpi=300, bbox_inches='tight')
# plot the correlation function of sub-ohmic, ohmic and super-ohmic baths
from legendre_discretization import get_vn_squared, get_approx_func
def correlation_func(J, n, domain):
import scipy.integrate as spi
corr = lambda t, T: spi.quad(lambda w: J(w) * (np.cos(w*t) / np.tanh(w/2/T) - 1j * np.sin(w*t)), *domain)[0]
return np.vectorize(corr)
def correlation_func_sum(J, n, domain):
freq, vs_squared = get_vn_squared(J, n, domain)
# select frquences within [0.85, 1.15]
# selector = (freq > 0.85) & (freq < 1.15)
# freq = freq[selector]
# vs_squared = vs_squared[selector]
# print(freq)
corr_single = lambda v_squared, w, t, T: v_squared * (np.cos(w*t) / np.tanh(w/2/T) - 1j * np.sin(w*t))
corr = lambda t, T: np.sum(corr_single(vs_squared, freq, t, T))
return np.vectorize(corr)
s_list = [0.01, 0.1, 0.5, 1.0, 2.0]
fig, ax = plt.subplots(2, len(s_list), figsize=(12*1.,9/2*1.))
cost_integration = 0
cost_summation = 0
# measure the cost of integration and summation
import time
for i, s in enumerate(s_list):
domain = [0, 100]
resonance_domain = [0.85, 1.15]
n_modes = 10
wlist = np.linspace(*domain, 1000)
tlist = np.linspace(0, 0.5, 100)
J = lambda w: ohmic(w, A=0.1, s=s, ν_c=ωc)
corr_integral = correlation_func(J, n_modes, domain)
corr_sum = correlation_func_sum(J, n_modes, domain)
t_0 = time.time()
ax[0][i].plot(tlist, np.real(corr_integral(tlist, 0.000001)), '-', label='Continuous')
cost_integration += time.time() - t_0
t_0 = time.time()
ax[0][i].plot(tlist, np.real(corr_sum(tlist, 0.000001)), '--', label='Discretized')
cost_summation += time.time() - t_0
# ax[0][i].plot(tlist, np.imag(corr(tlist, 0.000001)), '--', label='Imaginary')
# ax[0][i].set_ylim(-6, 20)
ax[0][i].set_xlabel('t')
ax[0][0].set_ylabel('Correlation Function $C(t)$')
ax[0][i].set_title('s = {}'.format(s))
ax[0][i].legend()
J_approx = get_approx_func(J, n_modes, domain, 0.6)
ax[1][i].plot(wlist, J(wlist), label='Continuous')
ax[1][i].plot(wlist, J_approx(wlist), '--', label='Discretized')
# ax[1][i].set_ylim(0, 0.6)
ax[1][i].set_xlabel('$\omega$')
ax[1][0].set_ylabel('$J(\omega)$')
ax[1][i].legend()
# Save the figure
plt.savefig("correlation.png", dpi=300, bbox_inches='tight')
print("Integration cost: ", cost_integration)
print("Summation cost: ", cost_summation)