-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathutil.py
61 lines (41 loc) · 1.33 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
""" Utility functions """
import numpy as np
def identity(x):
return x
def nub(xs):
""" Removes duplicates, maintaining original order. """
return nub_by(xs, identity)
def nub_by(xs, key):
""" Removes elements with duplicate keys, maintaining original order. """
seen = set()
def check_and_add(x):
k = key(x)
if k not in seen:
seen.add(k)
return True
return False
return (x for x in xs if check_and_add(x))
def chunked(xs, chunk_size):
""" Splits a list into `chunk_size`-sized pieces. """
xs = list(xs)
return [
xs[i:i + chunk_size]
for i in range(0, len(xs), chunk_size)
]
def decreasing_length(xs):
return sorted(list(xs), key=lambda x: len(x[0]), reverse=True)
def chunked_sorted(xs, chunk_size):
return chunked(decreasing_length(xs), chunk_size)
def shuffled_chunked_sorted(xs, chunk_size):
""" Splits a list into `chunk_size`-sized pieces. """
chunks = chunked_sorted(xs, chunk_size)
np.random.shuffle(chunks)
return chunks
def right_pad(xs, min_len, pad_element):
"""
Appends `pad_element`s to `xs` so that it has length `min_len`.
No-op if `len(xs) >= min_len`.
"""
return xs + [pad_element] * (min_len - len(xs))
def to_cuda(gpu):
return (lambda v: v.cuda()) if gpu else identity