This repository has been archived by the owner on Jul 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
130 lines (100 loc) · 4.67 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch, time
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torchvision import datasets, models, transforms
import os
from PIL import Image
from efficientnet_pytorch import EfficientNet
from tqdm import tqdm
from sklearn.metrics import f1_score
image_size = (456, 456)
img_mean, img_std = [0.459], [0.347]
data_transforms={"train":transforms.Compose([transforms.Resize(image_size),
transforms.Grayscale(num_output_channels=1),
transforms.RandomRotation(degrees=90),
transforms.ToTensor(),
transforms.Normalize(img_mean, img_std)
]),
"val":transforms.Compose([transforms.Resize(image_size),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Normalize(img_mean, img_std)
])
}
data_dir=r"../covid-dataset"
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir,x),data_transforms[x]) for x in ["train","val"]}
dataloaders={}
dataloaders["train"]=torch.utils.data.DataLoader(image_datasets["train"], batch_size=40, shuffle=True, num_workers=8)
dataloaders["val"]=torch.utils.data.DataLoader(image_datasets["val"], batch_size=40, shuffle=True, num_workers=8)
dataset_sizes={x: len(image_datasets[x]) for x in ["train","val"]}
class_names=image_datasets["train"].classes
print(class_names)
num_classes=len(class_names)
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
val={"loss":[],"acc":[]}
train={"loss":[],"acc":[]}
def train_model(model, criterion, optimizer , num_epochs=15):
start_time=time.time()
best_f1 = 0.0
for epoch in range(num_epochs):
print("epoch{}/{}".format(epoch, num_epochs-1))
print("-"*10)
for phase in ["train", "val"]:
if phase =="train":
model.train()
else:
model.eval()
running_loss=0.0
running_corrects=0.0
for inputs,labels in tqdm(dataloaders[phase]):
inputs=inputs.to(device)
labels=labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase=="train"):
outputs=model(inputs)
_,preds=torch.max(outputs,1)
loss=criterion(outputs,labels)
if phase == "train":
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
labels = labels.cpu()
preds = preds.cpu()
epoch_f1 = f1_score(labels, preds, average="micro")
if phase == "train":
train["loss"].append(epoch_loss)
train["acc"].append(epoch_acc.item())
else:
val["loss"].append(epoch_loss)
val["acc"].append(epoch_acc.item())
print("{} Loss: {:.4f} Acc: {:.4f} f1_score: {}".format(phase, epoch_loss, epoch_acc, epoch_f1))
if phase == "val" and epoch_f1 > best_f1:
torch.save(model.state_dict(),"./models/efnet-b5.pth")
best_f1 = epoch_f1
time_elapsed = time.time() - start_time
print("training completed in {:.0f}m {:.0f}s".format(time_elapsed//60,time_elapsed%60))
print("best f1 score: {:.4f}".format(best_f1))
return model
class EffNet(nn.Module):
def __init__(self, img_size):
super(EffNet, self).__init__()
self.eff_net = EfficientNet.from_name('efficientnet-b5', in_channels=1, image_size = img_size, num_classes=3)
self.eff_net.set_swish(memory_efficient=False)
def forward(self, x):
x = self.eff_net(x)
x = torch.nn.functional.softmax(x, dim=1)
return x
model = EffNet(image_size)
model = nn.DataParallel(model)
model.to(device)
nSamples = [82286, 35996, 25496]
normedWeights = [1 - (x / sum(nSamples)) for x in nSamples]
normedWeights = torch.FloatTensor(normedWeights).to(device)
criterion=nn.CrossEntropyLoss(weight=normedWeights)
optimizer=optim.AdamW(model.parameters(),lr=1e-3)
model_ft=train_model(model,criterion,optimizer,num_epochs=25)
torch.save(model_ft.save_dict(),"./models/efnet-b5-last.pth")