This repository has been archived by the owner on Jul 25, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconf_matrix.py
66 lines (56 loc) · 2.54 KB
/
conf_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch, time, copy
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torchvision import datasets, models, transforms
import os
from PIL import Image
from efficientnet_pytorch import EfficientNet
from tqdm import tqdm
from sklearn.metrics import f1_score
image_size = (456, 456)
img_mean, img_std = [0.459], [0.347]
data_transforms={"train":transforms.Compose([transforms.Resize(image_size),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Normalize(img_mean, img_std)
]),
"test":transforms.Compose([transforms.Resize(image_size),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
transforms.Normalize(img_mean, img_std)
])
}
data_dir=r"./"
image_datasets = datasets.ImageFolder(os.path.join(data_dir,"test"),data_transforms["test"])
dataloaders={}
dataloaders["test"]=torch.utils.data.DataLoader(image_datasets, batch_size=40, shuffle=True)
dataset_sizes=len(image_datasets)
class_names=image_datasets.classes
nb_classes=len(class_names)
device = torch.device("cpu")
model_ft = EfficientNet.from_name('efficientnet-b5', in_channels=1, image_size = image_size, num_classes=3)
model_ft.load_state_dict(torch.load("./models/model.pth", map_location=device))
model_ft = model_ft.to(device)
model_ft.eval()
confusion_matrix = torch.zeros(nb_classes, nb_classes)
f1 = np.zeros(3)
count = 0
with torch.no_grad():
for i, (inputs, classes) in enumerate(tqdm(dataloaders['test'])):
inputs = inputs.to(device)
classes = classes.to(device)
outputs = model_ft(inputs)
_, preds = torch.max(outputs, 1)
for t, p in zip(classes.view(-1), preds.view(-1)):
confusion_matrix[t.long(), p.long()] += 1
classes = classes.cpu()
preds = preds.cpu()
mid_f1 = np.array(f1_score(classes, preds, average=None))
f1 += np.add(f1, mid_f1)
count += 1
print("Per class Accuracy: ", confusion_matrix.diag()/confusion_matrix.sum(1))
confusion_matrix = confusion_matrix.cpu().detach().numpy()
print(class_names)
print("Confusion matrix: \n", confusion_matrix - confusion_matrix.min() / (confusion_matrix.max() - confusion_matrix.min()))
print("F1 Score: ", f1/count)