-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmultilayer_perceptron.py
1665 lines (1326 loc) · 65.1 KB
/
multilayer_perceptron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""Multi-layer Perceptron
"""
# Authors: Issam H. Laradji <[email protected]>
# Andreas Mueller
# Jiyuan Qian
# License: BSD 3 clause
import numpy as np
from abc import ABCMeta, abstractmethod
from scipy.optimize import fmin_l_bfgs_b
import warnings
from sklearn.base import BaseEstimator, ClassifierMixin, RegressorMixin
from sklearn.base import is_classifier
from sklearn.neural_network._base import ACTIVATIONS, DERIVATIVES, LOSS_FUNCTIONS
from sklearn.neural_network._stochastic_optimizers import SGDOptimizer, AdamOptimizer
from sklearn.externals import six
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.utils import gen_batches, check_random_state
from sklearn.utils import shuffle
from sklearn.utils import check_array, check_X_y, column_or_1d
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils.extmath import safe_sparse_dot
from sklearn.utils.validation import check_is_fitted
from sklearn.utils.multiclass import _check_partial_fit_first_call, unique_labels
from sklearn.utils.multiclass import type_of_target
_STOCHASTIC_SOLVERS = ['sgd', 'adam']
def _pack(coefs_, intercepts_):
"""Pack the parameters into a single vector."""
return np.hstack([l.ravel() for l in coefs_ + intercepts_])
class BaseMultilayerPerceptron(six.with_metaclass(ABCMeta, BaseEstimator)):
"""Base class for MLP classification and regression.
Warning: This class should not be used directly.
Use derived classes instead.
sklearn. versionadded:: 0.18
"""
@abstractmethod
def __init__(self, hidden_layer_sizes, activation, solver,
alpha, batch_size, learning_rate, learning_rate_init, power_t,
max_iter, loss, shuffle, random_state, tol, verbose,
warm_start, momentum, nesterovs_momentum, early_stopping,
validation_fraction, beta_1, beta_2, epsilon):
self.activation = activation
self.solver = solver
self.alpha = alpha
self.batch_size = batch_size
self.learning_rate = learning_rate
self.learning_rate_init = learning_rate_init
self.power_t = power_t
self.max_iter = max_iter
self.loss = loss
self.hidden_layer_sizes = hidden_layer_sizes
self.shuffle = shuffle
self.random_state = random_state
self.tol = tol
self.verbose = verbose
self.warm_start = warm_start
self.momentum = momentum
self.nesterovs_momentum = nesterovs_momentum
self.early_stopping = early_stopping
self.validation_fraction = validation_fraction
self.beta_1 = beta_1
self.beta_2 = beta_2
self.epsilon = epsilon
def _unpack(self, packed_parameters):
"""Extract the coefficients and intercepts from packed_parameters."""
for i in range(self.n_layers_ - 1):
start, end, shape = self._coef_indptr[i]
self.coefs_[i] = np.reshape(packed_parameters[start:end], shape)
start, end = self._intercept_indptr[i]
self.intercepts_[i] = packed_parameters[start:end]
def _forward_pass(self, activations):
"""Perform a forward pass on the network by computing the values
of the neurons in the hidden layers and the output layer.
Parameters
----------
activations : list, length = n_layers - 1
The ith element of the list holds the values of the ith layer.
with_output_activation : bool, default True
If True, the output passes through the output activation
function, which is either the softmax function or the
logistic function
"""
hidden_activation = ACTIVATIONS[self.activation]
# Iterate over the hidden layers
for i in range(self.n_layers_ - 1):
activations[i + 1] = safe_sparse_dot(activations[i],
self.coefs_[i])
activations[i + 1] += self.intercepts_[i]
# For the hidden layers
if (i + 1) != (self.n_layers_ - 1):
activations[i + 1] = hidden_activation(activations[i + 1])
# For the last layer
output_activation = ACTIVATIONS[self.out_activation_]
activations[i + 1] = output_activation(activations[i + 1])
return activations
def _compute_loss_grad(self, layer, n_samples, activations, deltas,
coef_grads, intercept_grads):
"""Compute the gradient of loss with respect to coefs and intercept for
specified layer.
This function does backpropagation for the specified one layer.
"""
coef_grads[layer] = safe_sparse_dot(activations[layer].T,
deltas[layer])
coef_grads[layer] += (self.alpha * self.coefs_[layer])
coef_grads[layer] /= n_samples
intercept_grads[layer] = np.mean(deltas[layer], 0)
return coef_grads, intercept_grads
def _loss_grad_lbfgs(self, packed_coef_inter, X, y, activations, deltas,
coef_grads, intercept_grads):
"""Compute the MLP loss function and its corresponding derivatives
with respect to the different parameters given in the initialization.
Returned gradients are packed in a single vector so it can be used
in lbfgs
Parameters
----------
packed_parameters : array-like
A vector comprising the flattened coefficients and intercepts.
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
y : array-like, shape (n_samples,)
The target values.
activations : list, length = n_layers - 1
The ith element of the list holds the values of the ith layer.
deltas : list, length = n_layers - 1
The ith element of the list holds the difference between the
activations of the i + 1 layer and the backpropagated error.
More specifically, deltas are gradients of loss with respect to z
in each layer, where z = wx + b is the value of a particular layer
before passing through the activation function
coef_grad : list, length = n_layers - 1
The ith element contains the amount of change used to update the
coefficient parameters of the ith layer in an iteration.
intercept_grads : list, length = n_layers - 1
The ith element contains the amount of change used to update the
intercept parameters of the ith layer in an iteration.
Returns
-------
loss : float
grad : array-like, shape (number of nodes of all layers,)
"""
self._unpack(packed_coef_inter)
loss, coef_grads, intercept_grads = self._backprop(
X, y, activations, deltas, coef_grads, intercept_grads)
self.n_iter_ += 1
grad = _pack(coef_grads, intercept_grads)
return loss, grad
def _backprop(self, X, y, activations, deltas, coef_grads,
intercept_grads):
"""Compute the MLP loss function and its corresponding derivatives
with respect to each parameter: weights and bias vectors.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
y : array-like, shape (n_samples,)
The target values.
activations : list, length = n_layers - 1
The ith element of the list holds the values of the ith layer.
deltas : list, length = n_layers - 1
The ith element of the list holds the difference between the
activations of the i + 1 layer and the backpropagated error.
More specifically, deltas are gradients of loss with respect to z
in each layer, where z = wx + b is the value of a particular layer
before passing through the activation function
coef_grad : list, length = n_layers - 1
The ith element contains the amount of change used to update the
coefficient parameters of the ith layer in an iteration.
intercept_grads : list, length = n_layers - 1
The ith element contains the amount of change used to update the
intercept parameters of the ith layer in an iteration.
Returns
-------
loss : float
coef_grads : list, length = n_layers - 1
intercept_grads : list, length = n_layers - 1
"""
n_samples = X.shape[0]
# Forward propagate
activations = self._forward_pass(activations)
# Get loss
loss_func_name = self.loss
if loss_func_name == 'log_loss' and self.out_activation_ == 'logistic':
loss_func_name = 'binary_log_loss'
loss = LOSS_FUNCTIONS[loss_func_name](y, activations[-1])
# Add L2 regularization term to loss
values = np.sum(
np.array([np.dot(s.ravel(), s.ravel()) for s in self.coefs_]))
loss += (0.5 * self.alpha) * values / n_samples
# Backward propagate
last = self.n_layers_ - 2
# The calculation of delta[last] here works with following
# combinations of output activation and loss function:
# sigmoid and binary cross entropy, softmax and categorical cross
# entropy, and identity with squared loss
deltas[last] = activations[-1] - y
# Compute gradient for the last layer
coef_grads, intercept_grads = self._compute_loss_grad(
last, n_samples, activations, deltas, coef_grads, intercept_grads)
# Iterate over the hidden layers
for i in range(self.n_layers_ - 2, 0, -1):
deltas[i - 1] = safe_sparse_dot(deltas[i], self.coefs_[i].T)
inplace_derivative = DERIVATIVES[self.activation]
inplace_derivative(activations[i], deltas[i - 1])
coef_grads, intercept_grads = self._compute_loss_grad(
i - 1, n_samples, activations, deltas, coef_grads,
intercept_grads)
return loss, coef_grads, intercept_grads
def _initialize(self, y, layer_units):
# set all attributes, allocate weights etc for first call
# Initialize parameters
self.n_iter_ = 0
self.t_ = 0
self.n_outputs_ = y.shape[1]
# Compute the number of layers
self.n_layers_ = len(layer_units)
# Output for regression
if not is_classifier(self):
self.out_activation_ = 'identity'
# Output for multi class
elif self._label_binarizer.y_type_ == 'multiclass':
self.out_activation_ = 'softmax'
# Output for binary class and multi-label
else:
self.out_activation_ = 'logistic'
# Initialize coefficient and intercept layers
self.coefs_ = []
self.intercepts_ = []
for i in range(self.n_layers_ - 1):
coef_init, intercept_init = self._init_coef(layer_units[i],
layer_units[i + 1])
self.coefs_.append(coef_init)
self.intercepts_.append(intercept_init)
if self.solver in _STOCHASTIC_SOLVERS:
self.loss_curve_ = []
self._no_improvement_count = 0
if self.early_stopping:
self.validation_scores_ = []
self.best_validation_score_ = -np.inf
else:
self.best_loss_ = np.inf
def _init_coef(self, fan_in, fan_out):
if self.activation == 'logistic':
# Use the initialization method recommended by
# Glorot et al.
init_bound = np.sqrt(2. / (fan_in + fan_out))
elif self.activation in ('identity', 'tanh', 'relu'):
init_bound = np.sqrt(6. / (fan_in + fan_out))
else:
# this was caught earlier, just to make sure
raise ValueError("Unknown activation function %s" %
self.activation)
coef_init = self._random_state.uniform(-init_bound, init_bound,
(fan_in, fan_out))
intercept_init = self._random_state.uniform(-init_bound, init_bound,
fan_out)
return coef_init, intercept_init
def _fit(self, X, y, incremental=False):
# Make sure self.hidden_layer_sizes is a list
hidden_layer_sizes = self.hidden_layer_sizes
if not hasattr(hidden_layer_sizes, "__iter__"):
hidden_layer_sizes = [hidden_layer_sizes]
hidden_layer_sizes = list(hidden_layer_sizes)
# Validate input parameters.
self._validate_hyperparameters()
if np.any(np.array(hidden_layer_sizes) <= 0):
raise ValueError("hidden_layer_sizes must be > 0, got %s." %
hidden_layer_sizes)
X, y = self._validate_input(X, y, incremental)
n_samples, n_features = X.shape
# Ensure y is 2D
if y.ndim == 1:
y = y.reshape((-1, 1))
self.n_outputs_ = y.shape[1]
layer_units = ([n_features] + hidden_layer_sizes +
[self.n_outputs_])
# check random state
self._random_state = check_random_state(self.random_state)
if not hasattr(self, 'coefs_') or (not self.warm_start and not
incremental):
# First time training the model
self._initialize(y, layer_units)
# lbfgs does not support mini-batches
if self.solver == 'lbfgs':
batch_size = n_samples
elif self.batch_size == 'auto':
batch_size = min(200, n_samples)
else:
if self.batch_size < 1 or self.batch_size > n_samples:
warnings.warn("Got `batch_size` less than 1 or larger than "
"sample size. It is going to be clipped")
batch_size = np.clip(self.batch_size, 1, n_samples)
# Initialize lists
activations = [X]
activations.extend(np.empty((batch_size, n_fan_out))
for n_fan_out in layer_units[1:])
deltas = [np.empty_like(a_layer) for a_layer in activations]
coef_grads = [np.empty((n_fan_in_, n_fan_out_)) for n_fan_in_,
n_fan_out_ in zip(layer_units[:-1],
layer_units[1:])]
intercept_grads = [np.empty(n_fan_out_) for n_fan_out_ in
layer_units[1:]]
# Run the Stochastic optimization solver
if self.solver in _STOCHASTIC_SOLVERS:
self._fit_stochastic(X, y, activations, deltas, coef_grads,
intercept_grads, layer_units, incremental)
# Run the LBFGS solver
elif self.solver == 'lbfgs':
self._fit_lbfgs(X, y, activations, deltas, coef_grads,
intercept_grads, layer_units)
return self
def _validate_hyperparameters(self):
if not isinstance(self.shuffle, bool):
raise ValueError("shuffle must be either True or False, got %s." %
self.shuffle)
if self.max_iter <= 0:
raise ValueError("max_iter must be > 0, got %s." % self.max_iter)
if self.alpha < 0.0:
raise ValueError("alpha must be >= 0, got %s." % self.alpha)
if (self.learning_rate in ["constant", "invscaling", "adaptive"] and
self.learning_rate_init <= 0.0):
raise ValueError("learning_rate_init must be > 0, got %s." %
self.learning_rate)
if self.momentum > 1 or self.momentum < 0:
raise ValueError("momentum must be >= 0 and <= 1, got %s" %
self.momentum)
if not isinstance(self.nesterovs_momentum, bool):
raise ValueError("nesterovs_momentum must be either True or False,"
" got %s." % self.nesterovs_momentum)
if not isinstance(self.early_stopping, bool):
raise ValueError("early_stopping must be either True or False,"
" got %s." % self.early_stopping)
if self.validation_fraction < 0 or self.validation_fraction >= 1:
raise ValueError("validation_fraction must be >= 0 and < 1, "
"got %s" % self.validation_fraction)
if self.beta_1 < 0 or self.beta_1 >= 1:
raise ValueError("beta_1 must be >= 0 and < 1, got %s" %
self.beta_1)
if self.beta_2 < 0 or self.beta_2 >= 1:
raise ValueError("beta_2 must be >= 0 and < 1, got %s" %
self.beta_2)
if self.epsilon <= 0.0:
raise ValueError("epsilon must be > 0, got %s." % self.epsilon)
# raise ValueError if not registered
supported_activations = ('identity', 'logistic', 'tanh', 'relu')
if self.activation not in supported_activations:
raise ValueError("The activation '%s' is not supported. Supported "
"activations are %s." % (self.activation,
supported_activations))
if self.learning_rate not in ["constant", "invscaling", "adaptive"]:
raise ValueError("learning rate %s is not supported. " %
self.learning_rate)
supported_solvers = _STOCHASTIC_SOLVERS + ["lbfgs"]
if self.solver not in supported_solvers:
raise ValueError("The solver %s is not supported. "
" Expected one of: %s" %
(self.solver, ", ".join(supported_solvers)))
def _fit_lbfgs(self, X, y, activations, deltas, coef_grads,
intercept_grads, layer_units):
# Store meta information for the parameters
self._coef_indptr = []
self._intercept_indptr = []
start = 0
# Save sizes and indices of coefficients for faster unpacking
for i in range(self.n_layers_ - 1):
n_fan_in, n_fan_out = layer_units[i], layer_units[i + 1]
end = start + (n_fan_in * n_fan_out)
self._coef_indptr.append((start, end, (n_fan_in, n_fan_out)))
start = end
# Save sizes and indices of intercepts for faster unpacking
for i in range(self.n_layers_ - 1):
end = start + layer_units[i + 1]
self._intercept_indptr.append((start, end))
start = end
# Run LBFGS
packed_coef_inter = _pack(self.coefs_,
self.intercepts_)
if self.verbose is True or self.verbose >= 1:
iprint = 1
else:
iprint = -1
optimal_parameters, self.loss_, d = fmin_l_bfgs_b(
x0=packed_coef_inter,
func=self._loss_grad_lbfgs,
maxfun=self.max_iter,
iprint=iprint,
pgtol=self.tol,
args=(X, y, activations, deltas, coef_grads, intercept_grads))
self._unpack(optimal_parameters)
def _fit_stochastic(self, X, y, activations, deltas, coef_grads,
intercept_grads, layer_units, incremental):
if not incremental or not hasattr(self, '_optimizer'):
params = self.coefs_ + self.intercepts_
if self.solver == 'sgd':
self._optimizer = SGDOptimizer(
params, self.learning_rate_init, self.learning_rate,
self.momentum, self.nesterovs_momentum, self.power_t)
elif self.solver == 'adam':
self._optimizer = AdamOptimizer(
params, self.learning_rate_init, self.beta_1, self.beta_2,
self.epsilon)
# early_stopping in partial_fit doesn't make sense
early_stopping = self.early_stopping and not incremental
if early_stopping:
X, X_val, y, y_val = train_test_split(
X, y, random_state=self._random_state,
test_size=self.validation_fraction)
if is_classifier(self):
y_val = self._label_binarizer.inverse_transform(y_val)
else:
X_val = None
y_val = None
n_samples = X.shape[0]
if self.batch_size == 'auto':
batch_size = min(200, n_samples)
else:
batch_size = np.clip(self.batch_size, 1, n_samples)
try:
for it in range(self.max_iter):
X, y = shuffle(X, y, random_state=self._random_state)
accumulated_loss = 0.0
for batch_slice in gen_batches(n_samples, batch_size):
activations[0] = X[batch_slice]
batch_loss, coef_grads, intercept_grads = self._backprop(
X[batch_slice], y[batch_slice], activations, deltas,
coef_grads, intercept_grads)
accumulated_loss += batch_loss * (batch_slice.stop -
batch_slice.start)
# update weights
grads = coef_grads + intercept_grads
self._optimizer.update_params(grads)
self.n_iter_ += 1
self.loss_ = accumulated_loss / X.shape[0]
self.t_ += n_samples
self.loss_curve_.append(self.loss_)
if self.verbose:
print("Iteration %d, loss = %.8f" % (self.n_iter_,
self.loss_))
# update no_improvement_count based on training loss or
# validation score according to early_stopping
self._update_no_improvement_count(early_stopping, X_val, y_val)
# for learning rate that needs to be updated at iteration end
self._optimizer.iteration_ends(self.t_)
if self._no_improvement_count > 2:
# not better than last two iterations by tol.
# stop or decrease learning rate
if early_stopping:
msg = ("Validation score did not improve more than "
"tol=%f for two consecutive epochs." % self.tol)
else:
msg = ("Training loss did not improve more than tol=%f"
" for two consecutive epochs." % self.tol)
is_stopping = self._optimizer.trigger_stopping(
msg, self.verbose)
if is_stopping:
break
else:
self._no_improvement_count = 0
if incremental:
break
if self.n_iter_ == self.max_iter:
warnings.warn(
"Stochastic Optimizer: Maximum iterations (%d) "
"reached and the optimization hasn't converged yet."
% self.max_iter, ConvergenceWarning)
except KeyboardInterrupt:
warnings.warn("Training interrupted by user.")
if early_stopping:
# restore best weights
self.coefs_ = self._best_coefs
self.intercepts_ = self._best_intercepts
def _update_no_improvement_count(self, early_stopping, X_val, y_val):
if early_stopping:
# compute validation score, use that for stopping
self.validation_scores_.append(self.score(X_val, y_val))
if self.verbose:
print("Validation score: %f" % self.validation_scores_[-1])
# update best parameters
# use validation_scores_, not loss_curve_
# let's hope no-one overloads .score with mse
last_valid_score = self.validation_scores_[-1]
if last_valid_score < (self.best_validation_score_ +
self.tol):
self._no_improvement_count += 1
else:
self._no_improvement_count = 0
if last_valid_score > self.best_validation_score_:
self.best_validation_score_ = last_valid_score
self._best_coefs = [c.copy() for c in self.coefs_]
self._best_intercepts = [i.copy()
for i in self.intercepts_]
else:
if self.loss_curve_[-1] > self.best_loss_ - self.tol:
self._no_improvement_count += 1
else:
self._no_improvement_count = 0
if self.loss_curve_[-1] < self.best_loss_:
self.best_loss_ = self.loss_curve_[-1]
def fit(self, X, y):
"""Fit the model to data matrix X and target(s) y.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
The input data.
y : array-like, shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real numbers in
regression).
Returns
-------
self : returns a trained MLP model.
"""
return self._fit(X, y, incremental=False)
@property
def partial_fit(self):
"""Fit the model to data matrix X and target y.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
y : array-like, shape (n_samples,)
The target values.
Returns
-------
self : returns a trained MLP model.
"""
if self.solver not in _STOCHASTIC_SOLVERS:
raise AttributeError("partial_fit is only available for stochastic"
" optimizers. %s is not stochastic."
% self.solver)
return self._partial_fit
def _partial_fit(self, X, y):
return self._fit(X, y, incremental=True)
def _predict(self, X):
"""Predict using the trained model
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
Returns
-------
y_pred : array-like, shape (n_samples,) or (n_samples, n_outputs)
The decision function of the samples for each class in the model.
"""
X = check_array(X, accept_sparse=['csr', 'csc', 'coo'])
# Make sure self.hidden_layer_sizes is a list
hidden_layer_sizes = self.hidden_layer_sizes
if not hasattr(hidden_layer_sizes, "__iter__"):
hidden_layer_sizes = [hidden_layer_sizes]
hidden_layer_sizes = list(hidden_layer_sizes)
layer_units = [X.shape[1]] + hidden_layer_sizes + \
[self.n_outputs_]
# Initialize layers
activations = [X]
for i in range(self.n_layers_ - 1):
activations.append(np.empty((X.shape[0],
layer_units[i + 1])))
# forward propagate
self._forward_pass(activations)
y_pred = activations[-1]
return y_pred
class MLPClassifier(BaseMultilayerPerceptron, ClassifierMixin):
"""Multi-layer Perceptron classifier.
This model optimizes the log-loss function using LBFGS or stochastic
gradient descent.
sklearn. versionadded:: 0.18
Parameters
----------
hidden_layer_sizes : tuple, length = n_layers - 2, default (100,)
The ith element represents the number of neurons in the ith
hidden layer.
activation : {'identity', 'logistic', 'tanh', 'relu'}, default 'relu'
Activation function for the hidden layer.
- 'identity', no-op activation, useful to implement linear bottleneck,
returns f(x) = x
- 'logistic', the logistic sigmoid function,
returns f(x) = 1 / (1 + exp(-x)).
- 'tanh', the hyperbolic tan function,
returns f(x) = tanh(x).
- 'relu', the rectified linear unit function,
returns f(x) = max(0, x)
solver : {'lbfgs', 'sgd', 'adam'}, default 'adam'
The solver for weight optimization.
- 'lbfgs' is an optimizer in the family of quasi-Newton methods.
- 'sgd' refers to stochastic gradient descent.
- 'adam' refers to a stochastic gradient-based optimizer proposed
by Kingma, Diederik, and Jimmy Ba
Note: The default solver 'adam' works pretty well on relatively
large datasets (with thousands of training samples or more) in terms of
both training time and validation score.
For small datasets, however, 'lbfgs' can converge faster and perform
better.
alpha : float, optional, default 0.0001
L2 penalty (regularization term) parameter.
batch_size : int, optional, default 'auto'
Size of minibatches for stochastic optimizers.
If the solver is 'lbfgs', the classifier will not use minibatch.
When set to "auto", `batch_size=min(200, n_samples)`
learning_rate : {'constant', 'invscaling', 'adaptive'}, default 'constant'
Learning rate schedule for weight updates.
- 'constant' is a constant learning rate given by
'learning_rate_init'.
- 'invscaling' gradually decreases the learning rate ``learning_rate_``
at each time step 't' using an inverse scaling exponent of 'power_t'.
effective_learning_rate = learning_rate_init / pow(t, power_t)
- 'adaptive' keeps the learning rate constant to
'learning_rate_init' as long as training loss keeps decreasing.
Each time two consecutive epochs fail to decrease training loss by at
least tol, or fail to increase validation score by at least tol if
'early_stopping' is on, the current learning rate is divided by 5.
Only used when ``solver='sgd'``.
learning_rate_init : double, optional, default 0.001
The initial learning rate used. It controls the step-size
in updating the weights. Only used when solver='sgd' or 'adam'.
power_t : double, optional, default 0.5
The exponent for inverse scaling learning rate.
It is used in updating effective learning rate when the learning_rate
is set to 'invscaling'. Only used when solver='sgd'.
max_iter : int, optional, default 200
Maximum number of iterations. The solver iterates until convergence
(determined by 'tol') or this number of iterations. For stochastic
solvers ('sgd', 'adam'), note that this determines the number of epochs
(how many times each data point will be used), not the number of
gradient steps.
shuffle : bool, optional, default True
Whether to shuffle samples in each iteration. Only used when
solver='sgd' or 'adam'.
random_state : int, RandomState instance or None, optional, default None
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
tol : float, optional, default 1e-4
Tolerance for the optimization. When the loss or score is not improving
by at least tol for two consecutive iterations, unless `learning_rate`
is set to 'adaptive', convergence is considered to be reached and
training stops.
verbose : bool, optional, default False
Whether to print progress messages to stdout.
warm_start : bool, optional, default False
When set to True, reuse the solution of the previous
call to fit as initialization, otherwise, just erase the
previous solution.
momentum : float, default 0.9
Momentum for gradient descent update. Should be between 0 and 1. Only
used when solver='sgd'.
nesterovs_momentum : boolean, default True
Whether to use Nesterov's momentum. Only used when solver='sgd' and
momentum > 0.
early_stopping : bool, default False
Whether to use early stopping to terminate training when validation
score is not improving. If set to true, it will automatically set
aside 10% of training data as validation and terminate training when
validation score is not improving by at least tol for two consecutive
epochs.
Only effective when solver='sgd' or 'adam'
validation_fraction : float, optional, default 0.1
The proportion of training data to set aside as validation set for
early stopping. Must be between 0 and 1.
Only used if early_stopping is True
beta_1 : float, optional, default 0.9
Exponential decay rate for estimates of first moment vector in adam,
should be in [0, 1). Only used when solver='adam'
beta_2 : float, optional, default 0.999
Exponential decay rate for estimates of second moment vector in adam,
should be in [0, 1). Only used when solver='adam'
epsilon : float, optional, default 1e-8
Value for numerical stability in adam. Only used when solver='adam'
Attributes
----------
classes_ : array or list of array of shape (n_classes,)
Class labels for each output.
loss_ : float
The current loss computed with the loss function.
coefs_ : list, length n_layers - 1
The ith element in the list represents the weight matrix corresponding
to layer i.
intercepts_ : list, length n_layers - 1
The ith element in the list represents the bias vector corresponding to
layer i + 1.
n_iter_ : int,
The number of iterations the solver has ran.
n_layers_ : int
Number of layers.
n_outputs_ : int
Number of outputs.
out_activation_ : string
Name of the output activation function.
Notes
-----
MLPClassifier trains iteratively since at each time step
the partial derivatives of the loss function with respect to the model
parameters are computed to update the parameters.
It can also have a regularization term added to the loss function
that shrinks model parameters to prevent overfitting.
This implementation works with data represented as dense numpy arrays or
sparse scipy arrays of floating point values.
References
----------
Hinton, Geoffrey E.
"Connectionist learning procedures." Artificial intelligence 40.1
(1989): 185-234.
Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of
training deep feedforward neural networks." International Conference
on Artificial Intelligence and Statistics. 2010.
He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification." arXiv preprint
arXiv:1502.01852 (2015).
Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic
optimization." arXiv preprint arXiv:1412.6980 (2014).
"""
def __init__(self, hidden_layer_sizes=(100,), activation="relu",
solver='adam', alpha=0.0001,
batch_size='auto', learning_rate="constant",
learning_rate_init=0.001, power_t=0.5, max_iter=200,
shuffle=True, random_state=None, tol=1e-4,
verbose=False, warm_start=False, momentum=0.9,
nesterovs_momentum=True, early_stopping=False,
validation_fraction=0.1, beta_1=0.9, beta_2=0.999,
epsilon=1e-8):
sup = super(MLPClassifier, self)
sup.__init__(hidden_layer_sizes=hidden_layer_sizes,
activation=activation, solver=solver, alpha=alpha,
batch_size=batch_size, learning_rate=learning_rate,
learning_rate_init=learning_rate_init, power_t=power_t,
max_iter=max_iter, loss='log_loss', shuffle=shuffle,
random_state=random_state, tol=tol, verbose=verbose,
warm_start=warm_start, momentum=momentum,
nesterovs_momentum=nesterovs_momentum,
early_stopping=early_stopping,
validation_fraction=validation_fraction,
beta_1=beta_1, beta_2=beta_2, epsilon=epsilon)
def _validate_input(self, X, y, incremental):
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc', 'coo'],
multi_output=True)
if y.ndim == 2 and y.shape[1] == 1:
y = column_or_1d(y, warn=True)
if not incremental:
self._label_binarizer = LabelBinarizer()
self._label_binarizer.fit(y)
self.classes_ = self._label_binarizer.classes_
elif self.warm_start:
classes = unique_labels(y)
if set(classes) != set(self.classes_):
raise ValueError("warm_start can only be used where `y` has "
"the same classes as in the previous "
"call to fit. Previously got %s, `y` has %s" %
(self.classes_, classes))
else:
classes = unique_labels(y)
if np.setdiff1d(classes, self.classes_, assume_unique=True):
raise ValueError("`y` has classes not in `self.classes_`."
" `self.classes_` has %s. 'y' has %s." %
(self.classes_, classes))
y = self._label_binarizer.transform(y)
return X, y
def predict(self, X):
"""Predict using the multi-layer perceptron classifier
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
Returns
-------
y : array-like, shape (n_samples,) or (n_samples, n_classes)
The predicted classes.
"""
check_is_fitted(self, "coefs_")
y_pred = self._predict(X)
if self.n_outputs_ == 1:
y_pred = y_pred.ravel()
return self._label_binarizer.inverse_transform(y_pred)
def fit(self, X, y):
"""Fit the model to data matrix X and target(s) y.
Parameters
----------
X : array-like or sparse matrix, shape (n_samples, n_features)
The input data.
y : array-like, shape (n_samples,) or (n_samples, n_outputs)
The target values (class labels in classification, real numbers in
regression).
Returns
-------
self : returns a trained MLP model.
"""
return self._fit(X, y, incremental=(self.warm_start and
hasattr(self, "classes_")))
@property
def partial_fit(self):
"""Fit the model to data matrix X and target y.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
y : array-like, shape (n_samples,)
The target values.
classes : array, shape (n_classes)
Classes across all calls to partial_fit.
Can be obtained via `np.unique(y_all)`, where y_all is the
target vector of the entire dataset.
This argument is required for the first call to partial_fit
and can be omitted in the subsequent calls.
Note that y doesn't need to contain all labels in `classes`.
Returns
-------
self : returns a trained MLP model.
"""