forked from vardanagarwal/Proctoring-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_landmarks.py
147 lines (117 loc) · 3.74 KB
/
face_landmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 19:47:08 2020
@author: hp
"""
import cv2
import numpy as np
import tensorflow as tf
from tensorflow import keras
def get_landmark_model(saved_model='models/pose_model'):
"""
Get the facial landmark model.
Original repository: https://github.com/yinguobing/cnn-facial-landmark
Parameters
----------
saved_model : string, optional
Path to facial landmarks model. The default is 'models/pose_model'.
Returns
-------
model : Tensorflow model
Facial landmarks model
"""
model = keras.models.load_model(saved_model)
return model
def get_square_box(box):
"""Get a square box out of the given box, by expanding it."""
left_x = box[0]
top_y = box[1]
right_x = box[2]
bottom_y = box[3]
box_width = right_x - left_x
box_height = bottom_y - top_y
# Check if box is already a square. If not, make it a square.
diff = box_height - box_width
delta = int(abs(diff) / 2)
if diff == 0: # Already a square.
return box
elif diff > 0: # Height > width, a slim box.
left_x -= delta
right_x += delta
if diff % 2 == 1:
right_x += 1
else: # Width > height, a short box.
top_y -= delta
bottom_y += delta
if diff % 2 == 1:
bottom_y += 1
# Make sure box is always square.
assert ((right_x - left_x) == (bottom_y - top_y)), 'Box is not square.'
return [left_x, top_y, right_x, bottom_y]
def move_box(box, offset):
"""Move the box to direction specified by vector offset"""
left_x = box[0] + offset[0]
top_y = box[1] + offset[1]
right_x = box[2] + offset[0]
bottom_y = box[3] + offset[1]
return [left_x, top_y, right_x, bottom_y]
def detect_marks(img, model, face):
"""
Find the facial landmarks in an image from the faces
Parameters
----------
img : np.uint8
The image in which landmarks are to be found
model : Tensorflow model
Loaded facial landmark model
face : list
Face coordinates (x, y, x1, y1) in which the landmarks are to be found
Returns
-------
marks : numpy array
facial landmark points
"""
offset_y = int(abs((face[3] - face[1]) * 0.1))
box_moved = move_box(face, [0, offset_y])
facebox = get_square_box(box_moved)
h, w = img.shape[:2]
if facebox[0] < 0:
facebox[0] = 0
if facebox[1] < 0:
facebox[1] = 0
if facebox[2] > w:
facebox[2] = w
if facebox[3] > h:
facebox[3] = h
face_img = img[facebox[1]: facebox[3],
facebox[0]: facebox[2]]
face_img = cv2.resize(face_img, (128, 128))
face_img = cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)
# # Actual detection.
predictions = model.signatures["predict"](
tf.constant([face_img], dtype=tf.uint8))
# Convert predictions to landmarks.
marks = np.array(predictions['output']).flatten()[:136]
marks = np.reshape(marks, (-1, 2))
marks *= (facebox[2] - facebox[0])
marks[:, 0] += facebox[0]
marks[:, 1] += facebox[1]
marks = marks.astype(np.uint)
return marks
def draw_marks(image, marks, color=(0, 255, 0)):
"""
Draw the facial landmarks on an image
Parameters
----------
image : np.uint8
Image on which landmarks are to be drawn.
marks : list or numpy array
Facial landmark points
color : tuple, optional
Color to which landmarks are to be drawn with. The default is (0, 255, 0).
Returns
-------
None.
"""
for mark in marks:
cv2.circle(image, (mark[0], mark[1]), 2, color, -1, cv2.LINE_AA)