forked from vardanagarwal/Proctoring-AI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio_part.py
134 lines (114 loc) · 3.92 KB
/
audio_part.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import speech_recognition as sr
import pyaudio
import wave
import time
import threading
import os
def read_audio(stream, filename):
chunk = 1024 # Record in chunks of 1024 samples
sample_format = pyaudio.paInt16 # 16 bits per sample
channels = 2
fs = 44100 # Record at 44100 samples per second
seconds = 10 # Number of seconds to record at once
filename = filename
frames = [] # Initialize array to store frames
for i in range(0, int(fs / chunk * seconds)):
data = stream.read(chunk)
frames.append(data)
# Save the recorded data as a WAV file
wf = wave.open(filename, 'wb')
wf.setnchannels(channels)
wf.setsampwidth(p.get_sample_size(sample_format))
wf.setframerate(fs)
wf.writeframes(b''.join(frames))
wf.close()
# Stop and close the stream
stream.stop_stream()
stream.close()
def convert(i):
if i >= 0:
sound = 'record' + str(i) +'.wav'
r = sr.Recognizer()
with sr.AudioFile(sound) as source:
r.adjust_for_ambient_noise(source)
print("Converting Audio To Text and saving to file..... ")
audio = r.listen(source)
try:
value = r.recognize_google(audio) ##### API call to google for speech recognition
os.remove(sound)
if str is bytes:
result = u"{}".format(value).encode("utf-8")
else:
result = "{}".format(value)
with open("test.txt","a") as f:
f.write(result)
f.write(" ")
f.close()
except sr.UnknownValueError:
print("")
except sr.RequestError as e:
print("{0}".format(e))
except KeyboardInterrupt:
pass
p = pyaudio.PyAudio() # Create an interface to PortAudio
chunk = 1024 # Record in chunks of 1024 samples
sample_format = pyaudio.paInt16 # 16 bits per sample
channels = 2
fs = 44100
def save_audios(i):
stream = p.open(format=sample_format,channels=channels,rate=fs,
frames_per_buffer=chunk,input=True)
filename = 'record'+str(i)+'.wav'
read_audio(stream, filename)
for i in range(30//10): # Number of total seconds to record/ Number of seconds per recording
t1 = threading.Thread(target=save_audios, args=[i])
x = i-1
t2 = threading.Thread(target=convert, args=[x]) # send one earlier than being recorded
t1.start()
t2.start()
t1.join()
t2.join()
if i==2:
flag = True
if flag:
convert(i)
p.terminate()
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
file = open("test.txt") ## Student speech file
data = file.read()
file.close()
stop_words = set(stopwords.words('english'))
word_tokens = word_tokenize(data) ######### tokenizing sentence
filtered_sentence = [w for w in word_tokens if not w in stop_words]
filtered_sentence = []
for w in word_tokens: ####### Removing stop words
if w not in stop_words:
filtered_sentence.append(w)
####### creating a final file
f=open('final.txt','w')
for ele in filtered_sentence:
f.write(ele+' ')
f.close()
##### checking whether proctor needs to be alerted or not
file = open("paper.txt") ## Question file
data = file.read()
file.close()
stop_words = set(stopwords.words('english'))
word_tokens = word_tokenize(data) ######### tokenizing sentence
filtered_questions = [w for w in word_tokens if not w in stop_words]
filtered_questions = []
for w in word_tokens: ####### Removing stop words
if w not in stop_words:
filtered_questions.append(w)
def common_member(a, b):
a_set = set(a)
b_set = set(b)
# check length
if len(a_set.intersection(b_set)) > 0:
return(a_set.intersection(b_set))
else:
return([])
comm = common_member(filtered_questions, filtered_sentence)
print('Number of common elements:', len(comm))
print(comm)