-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_ensemble2.py
103 lines (88 loc) · 3.99 KB
/
main_ensemble2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse
import collections
import torch
import numpy as np
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from parse_config import ConfigParser
from trainer import TrainerDeEnsemble, TrainerQdEnsemble
from evaluater import EvaluaterDEEnsemble, EvaluaterQdEnsemble
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
# n_ensembles
N = 2
def main(config):
logger = config.get_logger('train')
# setup data_loader instances
data_loader = config.init_obj('data_loader', module_data)
valid_data_loader = data_loader.valid_data_loader
test_data_loader = data_loader.test_data_loader
# build model architecture, then print to console
models = []
for i in range(N):
model = config.init_obj('arch', module_arch)
models.append(model)
logger.info(model)
# get function handles of loss and metrics
criterion = getattr(module_loss, config['loss'])
metrics = [getattr(module_metric, met) for met in config['metrics']]
# build optimizer, learning rate scheduler. delete every lines containing lr_scheduler for disabling scheduler
optimizers = []
for model in models:
trainable_params = filter(lambda p: p.requires_grad, model.parameters())
optimizer = config.init_obj('optimizer', torch.optim, trainable_params)
optimizers.append(optimizer)
lr_schedulers = []
for optimizer in optimizers:
lr_scheduler = config.init_obj('lr_scheduler', torch.optim.lr_scheduler, optimizer)
lr_schedulers.append(lr_scheduler)
if config.config['trainer']['type'] == 'Quality_driven_PI':
trainer = TrainerQdEnsemble(models, criterion, metrics, optimizers,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_schedulers=lr_schedulers)
elif config.config['trainer']['type'] == 'Deep_Ensemble':
trainer = TrainerDeEnsemble(models, criterion, metrics, optimizers,
config=config,
data_loader=data_loader,
valid_data_loader=valid_data_loader,
lr_schedulers=lr_schedulers)
else:
print("type error")
exit(1)
trainer.train()
if config.config['trainer']['type'] == 'Quality_driven_PI':
evaluater = EvaluaterQdEnsemble(models, criterion, metrics,
config=config,
test_data_loader=test_data_loader)
elif config.config['trainer']['type'] == 'Deep_Ensemble':
evaluater = EvaluaterDEEnsemble(models, criterion, metrics,
config=config,
test_data_loader=test_data_loader)
else:
print("type error")
exit(1)
evaluater.evaluate()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
# custom cli options to modify configuration from default values given in json file.
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;batch_size')
]
config = ConfigParser.from_args(args, options)
main(config)