-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbackup_passing_keys_error.py
1568 lines (1380 loc) · 66.1 KB
/
backup_passing_keys_error.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding=utf-8
# Original code Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Additions and modifications Copyright 2023 National Library of Norway. All rights reserved.
#
# This code is based on the original script developed by HuggingFace Inc.
# Substantial additions and modifications have been made by the AiLab at the
# National Library of Norway, with contributions from Per Egil Kummervold
# and Javier de la Rosa, including TPU Pod support, Dataset Streaming,
# performance enhancements, and support for new features.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the Flax library models for sequence to sequence speech recognition.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import os
import itertools
import json
import logging
import shutil
import socket
import sys
import tempfile
import time
from dataclasses import field
from datetime import datetime
from functools import partial
from importlib import import_module
from pathlib import Path
from typing import Any, Callable, Dict, Generator, List, Optional, Union
import flax
import jax
import jax.numpy as jnp
import numpy as np
import optax
import pandas as pd
import torch
# from jax.experimental.compilation_cache import compilation_cache; compilation_cache.initialize_cache(tempfile.gettempdir())
from flax import jax_utils, traverse_util
from flax.jax_utils import pad_shard_unpad, unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from torch.utils.data import IterableDataset
from tqdm import tqdm
import datasets
import evaluate
import transformers
from datasets import Dataset, DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset
from datasets.distributed import split_dataset_by_node
from huggingface_hub import Repository, create_repo
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
FlaxAutoModelForSpeechSeq2Seq,
HfArgumentParser,
Seq2SeqTrainingArguments,
is_tensorboard_available,
)
from transformers.modelcard import TrainingSummary
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE
from transformers.file_utils import get_full_repo_name
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from flax.training import checkpoints
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.27.0.dev0")
require_version("datasets>=1.18.2",
"To fix: pip install datasets>=1.18.2")
logger = logging.getLogger(__name__)
@flax.struct.dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
feature_extractor_name: Optional[str] = field(
default=None, metadata={"help": "feature extractor name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={
"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={
"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={
"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
dtype: Optional[str] = field(
default="float32",
metadata={
"help": (
"Floating-point format in which the model weights should be initialized and trained. Choose one of"
" `[float32, float16, bfloat16]`."
)
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
"which is used during evaluation."
)
},
)
dropout: Optional[float] = field(
default=None, metadata={"help": "The dropout ratio for the dropout layer probabilities."}
)
attention_dropout: Optional[float] = field(
default=None, metadata={"help": "The dropout ratio for the attention probabilities."}
)
activation_dropout: Optional[float] = field(
default=None, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
)
encoder_dropout: Optional[float] = field(
default=None, metadata={"help": "The dropout ratio for the encoder layer dropout probabilities."}
)
decoder_dropout: Optional[float] = field(
default=None, metadata={"help": "The dropout ratio for the decoder layer dropout probabilities."}
)
@flax.struct.dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={
"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
dataset_cache_dir: Optional[str] = field(
default=None, metadata={"help": "Path to cache directory for saving and loading datasets"}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=50,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "Truncate the number of prediction examples (test set) to this value if set."
},
)
audio_column_name: str = field(
default="audio",
metadata={
"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
)
text_column_name: str = field(
default="text",
metadata={
"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
)
max_duration_in_seconds: float = field(
default=30.0,
metadata={
"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"},
)
min_duration_in_seconds: float = field(
default=0.0,
metadata={
"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"},
)
max_label_length: Optional[int] = field(
default=256,
metadata={
"help": "Truncate transcriptions that are longer `max_label_length` tokens."},
)
pad_input_to_multiple_of: Optional[int] = field(
default=None,
metadata={
"help": "If set will pad the input sequence to a multiple of the provided value. "
"This is important to avoid triggering recompilations on TPU. If unspecified, will default to padding the inputs to max length."
},
)
pad_target_to_multiple_of: Optional[int] = field(
default=None,
metadata={
"help": "If set will pad the target sequence to a multiple of the provided value. "
"This is important to avoid triggering recompilations on TPU. If unspecified, will default to padding the targets to max length."
},
)
train_split_name: str = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
eval_split_name: str = field(
default="validation",
metadata={
"help": "The name of the evaluation data set split to use (via the datasets library). Defaults to 'validation'"
},
)
test_split_name: str = field(
default="test",
metadata={
"help": "The name of the prediction data set split to use (via the datasets library). Defaults to 'test'"
},
)
do_lower_case: bool = field(
default=False,
metadata={"help": "Whether the target text should be lower cased."},
)
do_remove_punctuation: bool = field(
default=False,
metadata={
"help": "Whether the target text should be striped of punctuation."},
)
do_normalize_eval: bool = field(
default=True,
metadata={
"help": "Whether to normalise the references and predictions in the eval WER calculation."},
)
language: str = field(
default=None,
metadata={
"help": (
"Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning "
"only. For English speech recognition, it should be set to `None`."
)
},
)
task: str = field(
default="transcribe",
metadata={
"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."},
)
num_train_steps: int = field(default=50000, metadata={
"help": "The number of training steps."})
shuffle_buffer_size: Optional[int] = field(
default=500,
metadata={
"help": (
"The number of streamed examples to download before shuffling them. The large the buffer, "
"the closer it is to real offline shuffling."
)
},
)
streaming: bool = field(
default=True,
metadata={
"help": "Whether to use streaming mode to load and pre-process the data."},
)
log_max_eval_predictions: Optional[int] = field(
default=0,
metadata={
"help": (
"Number of label and prediction pairs to write to the summary at each evaluation step."
)
},
)
log_eval_predictions_fn: Optional[str] = field(
default=None,
metadata={
"help": (
"Python path to function for logging evaluation predictions. It can be an external function like fn(summary_writer, train_metrics, eval_metrics, train_time, step, predictions, labels)."
)
},
)
log_max_test_predictions: Optional[int] = field(
default=0,
metadata={
"help": (
"Number of label and prediction pairs to write to the summary at prediction time when do_predict is passed."
)
},
)
log_test_predictions_fn: Optional[str] = field(
default=None,
metadata={
"help": (
"Python path to function for logging predictions when do_predict is passed. It can be an external function like fn(summary_writer, train_metrics, eval_metrics, train_time, step, predictions, labels)."
)
},
)
run_description: Optional[str] = field(
default=None,
metadata={
"help": (
"A longer description of the run/experiment."
)
},
)
wandb_entity: Optional[str] = field(
default=None,
metadata={
"help": (
"Weights & Biases username or entity (organization name)."
)
},
)
wandb_project: Optional[str] = field(
default=None,
metadata={
"help": (
"Weights & Biases project to log metrics to."
)
},
)
def shift_tokens_right(label_ids: np.array, decoder_start_token_id: int) -> np.ndarray:
"""
Shift label ids one token to the right.
"""
shifted_label_ids = np.zeros_like(label_ids)
shifted_label_ids[:, 1:] = label_ids[:, :-1]
shifted_label_ids[:, 0] = decoder_start_token_id
return shifted_label_ids
@flax.struct.dataclass
class FlaxDataCollatorSpeechSeq2SeqWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor ([`Wav2Vec2Processor`])
The processor used for proccessing the data.
decoder_start_token_id (:obj: `int`)
The begin-of-sentence of the decoder.
input_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned input sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
target_padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned target sequences (according to the model's padding side and padding index).
See above for details.
max_input_length (:obj:`float`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_target_length (:obj:`int`, `optional`):
Maximum length of the ``labels`` of the returned list and optionally padding length (see above).
pad_input_to_multiple_of (:obj:`int`, `optional`):
If set will pad the input sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
pad_target_to_multiple_of (:obj:`int`, `optional`):
If set will pad the target sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: Any
decoder_start_token_id: int
input_padding: Union[bool, str] = "longest"
target_padding: Union[bool, str] = "max_length"
max_input_length: Optional[float] = None
max_target_length: Optional[int] = None
pad_input_to_multiple_of: Optional[int] = None
pad_target_to_multiple_of: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], np.ndarray]]]) -> Dict[str, np.ndarray]:
model_input_name = self.processor.model_input_names[0]
input_features = {model_input_name: features[model_input_name]}
label_features = {"input_ids": features["labels"]}
# reformat list to dict and set to pytorch format
batch = self.processor.feature_extractor.pad(
input_features,
max_length=self.max_input_length,
padding=self.input_padding,
pad_to_multiple_of=self.pad_input_to_multiple_of,
return_tensors="np",
)
labels_batch = self.processor.tokenizer.pad(
label_features,
max_length=self.max_target_length,
padding=self.target_padding,
pad_to_multiple_of=self.pad_target_to_multiple_of,
return_tensors="np",
)
# if bos token is appended in previous tokenization step,
# cut bos token here as it's append later anyways
labels = labels_batch["input_ids"]
if (labels[:, 0] == self.decoder_start_token_id).all().item():
labels = labels[:, 1:]
labels_batch.attention_mask = labels_batch.attention_mask[:, 1:]
decoder_input_ids = shift_tokens_right(
labels, self.decoder_start_token_id)
# replace padding with -100 to ignore correctly when computing the loss
labels = np.ma.array(labels, mask=np.not_equal(
labels_batch.attention_mask, 1))
labels = labels.filled(fill_value=-100)
batch["labels"] = labels
batch["decoder_input_ids"] = decoder_input_ids
batch["attention_mask"] = labels_batch.attention_mask # Add attention_mask to the batch
#The extra keys here should be passed along
for key in features.keys():
if key not in batch.keys():
batch[key] = features[key]
return batch
def load_maybe_streaming_dataset(dataset_name, dataset_config_name, split="train", streaming=True, **kwargs):
"""
Utility function to load a dataset in streaming mode. For datasets with multiple splits,
each split is loaded individually and then splits combined by taking alternating examples from
each (interleaving).
"""
if "+" in split:
# load multiple splits separated by the `+` symbol with streaming mode
dataset_splits = [
load_dataset(dataset_name, dataset_config_name,
split=split_name, streaming=streaming, **kwargs)
for split_name in split.split("+")
]
# interleave multiple splits to form one dataset
interleaved_dataset = interleave_datasets(dataset_splits)
return interleaved_dataset
else:
# load a single split *with* streaming mode
dataset = load_dataset(
dataset_name, dataset_config_name, split=split, streaming=streaming, **kwargs)
return dataset
def collate_batch(samples):
return {key: [feature[key] for feature in samples] for key in samples[0]}
def data_loader(
dataset: Dataset,
batch_size: int,
drop_last: bool=True,
num_workers: int=0,
) -> Generator:
"""
Returns batches of size `batch_size` from `dataset`. If `drop_last` is set to `False`, the final batch may be incomplete,
and range in size from 1 to `batch_size`. Shuffle batches if `shuffle` is `True`.
"""
data_loader_iterator = iter(torch.utils.data.DataLoader(
batch_size=batch_size,
dataset=dataset.with_format("torch"),
num_workers=num_workers,
collate_fn=collate_batch,
drop_last=drop_last,
))
return data_loader_iterator
class TrainState(train_state.TrainState):
dropout_rng: jnp.ndarray
def replicate(self):
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
def create_learning_rate_fn(
num_train_steps: int, num_warmup_steps: int, learning_rate: float, start_step: int=0, warmup_init_value: float=0.0, decay_end_value: float=0.0,
) -> Callable[[int], jnp.array]:
"""Returns a linear warmup, linear_decay learning rate function."""
warmup_fn = optax.linear_schedule(
init_value=warmup_init_value, end_value=learning_rate, transition_steps=num_warmup_steps)
decay_fn = optax.linear_schedule(
init_value=learning_rate, end_value=decay_end_value, transition_steps=num_train_steps - num_warmup_steps
)
schedule_fn = optax.join_schedules(
schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
def learning_rate_fn(step: int) -> jnp.array:
return schedule_fn(step + start_step)
return learning_rate_fn
def main():
# Parse input arguments
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your JAX/Flax versions.
send_example_telemetry("run_speech_recognition_seq2seq",
model_args, data_args, framework="flax")
# Setup logging
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
# Number of hosts
num_of_hosts = jax.process_count()
current_host_idx = jax.process_index()
if current_host_idx == 0:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
logger.setLevel(logging.INFO)
logger.info("Training/evaluation parameters %s", training_args)
if num_of_hosts and not training_args.push_to_hub:
logger.warning(
f"If you are on a TPU Pod or a multinode setup, you need to set --push_to_hub to be able to save checkpoints to the hub."
)
if num_of_hosts and not training_args.overwrite_output_dir and training_args.resume_from_checkpoint:
logger.error(
f"If you are on a TPU Pod or a multinode setup, you need to set --overwrite_output_dir to be able to resume from a pushed checkpoint."
)
sys.exit(1)
# Check the output dir is valid
if os.path.exists(training_args.output_dir):
if (
os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use `--overwrite_output_dir` to overcome."
)
elif training_args.overwrite_output_dir:
logger.warning(f"Removing path {training_args.output_dir}")
shutil.rmtree(training_args.output_dir)
# Handle the repository creation
output_dir = Path(training_args.output_dir)
repo_name = ""
if training_args.push_to_hub:
if training_args.hub_model_id is None:
repo_name = get_full_repo_name(
output_dir.absolute().name,
token=training_args.hub_token,
organization=training_args.push_to_hub_organization,
)
else:
repo_name = training_args.hub_model_id
repo_url = None
while not repo_url:
# Workaround for an internal HuggingFace error if the repo is being created by another worker
try:
repo_url = create_repo(
repo_name, exist_ok=True, token=training_args.hub_token, private=training_args.hub_private_repo
)
except:
time.sleep(1)
repo = Repository(training_args.output_dir,
clone_from=repo_name, token=training_args.hub_token)
# Set the model_name_or_path
model_name_or_path = model_args.model_name_or_path
# Try to detect last checkpoint and continue if possible
training_state = {"step": 0, "eval_lines": []}
if training_args.resume_from_checkpoint:
if (output_dir / "flax_model.msgpack").exists() and (output_dir / "training_state.bin").exists():
training_state = json.loads((output_dir / "training_state.bin").read_text())
model_name_or_path = os.path.join(training_args.output_dir)
logger.info(
f"Checkpoint detected, resuming training from {training_args.output_dir} at step {training_state['step']}."
)
else:
logger.info(
f"No valid checkpoint found in {training_args.output_dir}. Starting from {model_name_or_path}."
)
# Load dataset
raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict()
if training_args.do_train:
raw_datasets["train"] = load_maybe_streaming_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.train_split_name,
cache_dir=data_args.dataset_cache_dir,
streaming=data_args.streaming,
use_auth_token=True if model_args.use_auth_token else None,
)
if training_args.do_eval:
raw_datasets["eval"] = load_maybe_streaming_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.eval_split_name,
cache_dir=data_args.dataset_cache_dir,
streaming=data_args.streaming,
use_auth_token=True if model_args.use_auth_token else None,
)
if training_args.do_predict:
raw_datasets["test"] = load_maybe_streaming_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=data_args.test_split_name,
cache_dir=data_args.dataset_cache_dir,
streaming=data_args.streaming,
use_auth_token=True if model_args.use_auth_token else None,
)
if not training_args.do_train and not training_args.do_eval and not training_args.do_predict:
raise ValueError(
"There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
)
raw_datasets_features = list(
next(iter(raw_datasets.values())).features.keys())
if data_args.audio_column_name not in raw_datasets_features:
raise ValueError(
f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--audio_column_name` to the correct audio column - one of "
f"{', '.join(raw_datasets_features)}."
)
if data_args.text_column_name not in raw_datasets_features:
raise ValueError(
f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
"Make sure to set `--text_column_name` to the correct text column - one of "
f"{', '.join(raw_datasets_features)}."
)
# Load pretrained model, tokenizer, and feature extractor
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Update config with arguments. Use values set by model_args if they are not None, otherwise use values from config
config.update({
"dropout": model_args.dropout or getattr(config, "dropout", 0.0),
"attention_dropout": model_args.attention_dropout or getattr(config, "attention_dropout", 0.0),
"activation_dropout": model_args.activation_dropout or getattr(config, "activation_dropout", 0.0),
"decoder_layerdrop": model_args.decoder_dropout or getattr(config, "decoder_dropout", 0.0),
"encoder_layerdrop": model_args.encoder_dropout or getattr(config, "encoder_dropout", 0.0),
})
feature_extractor = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name if model_args.feature_extractor_name else model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = FlaxAutoModelForSpeechSeq2Seq.from_pretrained(
model_name_or_path,
config=config,
dtype=getattr(jnp, model_args.dtype),
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
logger.info(
f"Successfully loaded the model '{model_name_or_path}'."
)
if model.config.decoder_start_token_id is None:
raise ValueError(
"Make sure that `config.decoder_start_token_id` is correctly defined")
# Activate gradient checkpointing if needed
if training_args.gradient_checkpointing:
model.enable_gradient_checkpointing()
# Resample speech dataset: `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
dataset_sampling_rate = next(
iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
if dataset_sampling_rate != feature_extractor.sampling_rate:
raw_datasets = raw_datasets.cast_column(
data_args.audio_column_name, datasets.features.Audio(
sampling_rate=feature_extractor.sampling_rate)
)
# Preprocessing the datasets.
# We need to read the audio files as arrays and tokenize the targets.
max_input_length = int(
data_args.max_duration_in_seconds * feature_extractor.sampling_rate)
min_input_length = int(
data_args.min_duration_in_seconds * feature_extractor.sampling_rate)
max_label_length = (
data_args.max_label_length if data_args.max_label_length is not None else model.config.max_length
)
pad_input_to_multiple_of = data_args.pad_input_to_multiple_of
pad_target_to_multiple_of = data_args.pad_target_to_multiple_of
audio_column_name = data_args.audio_column_name
num_workers = data_args.preprocessing_num_workers
text_column_name = data_args.text_column_name
model_input_name = feature_extractor.model_input_names[0]
do_lower_case = data_args.do_lower_case
do_remove_punctuation = data_args.do_remove_punctuation
normalizer = BasicTextNormalizer() # 'official' text normalizer from OpenAI
if data_args.language is not None:
# We only need to set the task id when the language is specified (i.e. in a multilingual setting)
tokenizer.set_prefix_tokens(
language=data_args.language, task=data_args.task)
if training_args.do_train and data_args.max_train_samples is not None:
raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
if training_args.do_eval and data_args.max_eval_samples is not None:
raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
if training_args.do_predict and data_args.max_predict_samples is not None:
raw_datasets["test"] = raw_datasets["test"].select(range(data_args.max_predict_samples))
def prepare_dataset(batch):
# Process audio
sample = batch[audio_column_name]
inputs = feature_extractor(
sample["array"], sampling_rate=sample["sampling_rate"])
# Process audio length
batch[model_input_name] = inputs.get(model_input_name)[0]
batch["input_length"] = len(sample["array"])
# Process targets
input_str = batch[text_column_name].lower(
) if do_lower_case else batch[text_column_name]
if do_remove_punctuation:
input_str = normalizer(input_str).strip()
batch["labels"] = tokenizer(input_str, truncation=True, max_length=max_label_length).input_ids
return batch
# Make vecotrized datasets. Keeping the "id" since it is useful for prediction
with training_args.main_process_first(desc="dataset map pre-processing"):
vectorized_datasets = raw_datasets.map(
prepare_dataset,
remove_columns=raw_datasets_features
)
#remove_columns=[col for col in raw_datasets_features if col != "id"],
# Filter training data with inputs longer than max_input_length
def is_audio_in_length_range(length):
return min_input_length < length < max_input_length
if training_args.do_train:
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
is_audio_in_length_range,
input_columns=["input_length"],
)
if training_args.do_eval:
vectorized_datasets["eval"] = vectorized_datasets["eval"].filter(
is_audio_in_length_range,
input_columns=["input_length"],
)
if training_args.do_predict:
vectorized_datasets["test"] = vectorized_datasets["test"].filter(
is_audio_in_length_range,
input_columns=["input_length"],
)
# Load metrics and write stats
metric_wer = evaluate.load("wer")
metric_cer = evaluate.load("cer")
do_normalize_eval = data_args.do_normalize_eval
def compute_metrics(pred_ids, label_ids, return_preds_labels=False):
# Replace padded labels by the padding token
for idx in range(len(label_ids)):
label_ids[idx][label_ids[idx] == -100] = tokenizer.pad_token_id
predictions = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
# We do not want to group tokens when computing the metrics
labels = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
if do_normalize_eval:
pred_str = [normalizer(pred) for pred in predictions]
label_str = [normalizer(label) for label in labels]
# Filtering step to only evaluate the samples that correspond to non-zero references:
pred_str = [pred_str[i]
for i in range(len(pred_str)) if len(label_str[i]) > 0]
label_str = [label_str[i]
for i in range(len(label_str)) if len(label_str[i]) > 0]
else:
pred_str = predictions
label_str = labels
wer = 100 * metric_wer.compute(predictions=pred_str, references=label_str)
cer = 100 * metric_cer.compute(predictions=pred_str, references=label_str)
if return_preds_labels:
return {"wer": wer, "cer": cer}, predictions, labels
else:
return {"wer": wer, "cer": cer}
def update_training_state(training_state, train_metrics, eval_metrics, step):
safe_value = lambda x: float(x.tolist() if isinstance(x, jnp.ndarray) else x)
state = {"step": step}
eval_lines = training_state["eval_lines"]
train_metrics = get_metrics(train_metrics)
train_metrics_dict = {}
for metric_name, values in train_metrics.items():
tag = f"train_{metric_name}"
for i, value in enumerate(values):
train_metrics_dict[step - len(values) + i + 1] = {tag: safe_value(value)}
eval_metrics_dict = {}
for metric_name, value in eval_metrics.items():
tag = f"eval_{metric_name}"
eval_metrics_dict.update({
"step": step,
tag: safe_value(value),
})
if step in train_metrics_dict:
eval_metrics_dict.update(train_metrics_dict[step])
eval_lines.append(eval_metrics_dict)
return {**state, "eval_lines": eval_lines}
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step, predictions=None, labels=None, sample_ids=None, do_predict=False):
if not do_predict:
summary_writer.scalar("train_time", train_time, step)
train_metrics = get_metrics(train_metrics)
for key, vals in train_metrics.items():
tag = f"train_{key}"
for i, val in enumerate(vals):
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
predictions_fn = data_args.log_eval_predictions_fn
summary_prefix = "eval"
else:
predictions_fn = data_args.log_test_predictions_fn or data_args.log_eval_predictions_fn
summary_prefix = "test"
for metric_name, value in eval_metrics.items():
summary_writer.scalar(f"{summary_prefix}_{metric_name}", value, step)
# Log evaluation predictions
if predictions and labels:
df = pd.DataFrame({
"references": labels,
"predictions": predictions,
})
df["wer"] = df.apply(lambda row: metric_wer.compute(predictions=[row["predictions"]], references=[row["references"]]), axis=1)
df["cer"] = df.apply(lambda row: metric_cer.compute(predictions=[row["predictions"]], references=[row["references"]]), axis=1)
markdown_table = df.to_markdown(index=False)
eval_metrics_table = pd.DataFrame.from_dict([{"step": step, **eval_metrics}]).to_markdown(index=False)
summary_writer.text(f"{summary_prefix}_predictions", eval_metrics_table + "\n\n" + markdown_table, step)
# External logging function
if predictions_fn:
module, fname = predictions_fn.rsplit('.', 1)
fn = getattr(import_module(module), fname)
fn(summary_writer, train_metrics, eval_metrics, train_time, step, predictions=predictions, labels=labels, training_args=training_args, do_predict=do_predict)
# Save feature extractor, tokenizer and config
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
processor = AutoProcessor.from_pretrained(training_args.output_dir)
data_collator = FlaxDataCollatorSpeechSeq2SeqWithPadding(
processor=processor,
decoder_start_token_id=model.config.decoder_start_token_id,
input_padding="longest",
target_padding="longest",
max_target_length=max_label_length,
pad_input_to_multiple_of=pad_input_to_multiple_of,
pad_target_to_multiple_of=pad_target_to_multiple_of if pad_target_to_multiple_of else max_label_length,
)
# Enable tensorboard only on the master node
has_tensorboard = is_tensorboard_available()
if has_tensorboard and current_host_idx == 0:
try:
# TODO: Decouple wandb from tensorboard
import wandb
has_wandb = True
except ImportError:
has_wandb = False
if data_args.wandb_entity is not None or data_args.wandb_project is not None:
logger.warning(
f"Unable to display metrics through Weights & Biases because some packages are not installed: {ie}"
)
try:
if has_wandb:
wandb.tensorboard.patch(root_logdir=output_dir / "runs")
wandb.init(
entity=data_args.wandb_entity,
project=data_args.wandb_project,
name=training_args.run_name,
notes=data_args.run_description,
save_code=True,
sync_tensorboard=True,
)