forked from official-stockfish/nnue-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_plots.py
252 lines (211 loc) · 8.09 KB
/
do_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import numpy as np
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
import matplotlib.pyplot as plt
import argparse
import re
import sys
import os
import collections
def find_event_files(root_dir):
p = re.compile('events\\.out\\.tfevents.*')
tfevent_files = []
for path, subdirs, files in os.walk(root_dir, followlinks=False):
for filename in files:
m = p.match(filename)
if m:
tfevent_files.append(os.path.join(path, filename))
return tfevent_files
def find_ordo_file(root_dir):
for path, subdirs, files in os.walk(root_dir, followlinks=False):
for filename in files:
if filename == 'ordo.out':
return os.path.join(path, filename)
return None
def get_list_aggregator(aggregation_mode='avg'):
if aggregation_mode == 'min':
return lambda x: min(x)
elif aggregation_mode == 'max':
return lambda x: max(x)
elif aggregation_mode == 'avg':
return lambda x: sum(x) / len(x)
else:
raise Exception('Invalid aggregation_mode {}'.format(aggregation_mode))
def aggregate_dict(values, aggregation_mode='avg'):
'''
values must be a dict of lists
each list is aggregated to a single scalar
based on the aggregation_mode
can be one of 'min', 'max', 'avg'
'''
aggregate_list = get_list_aggregator(aggregation_mode)
res = dict()
for k, v in values.items():
res[k] = aggregate_list(v)
return res
def dict_to_xy(d):
x = []
y = []
for k, v in sorted(d.items()):
x.append(k)
y.append(v)
return x, y
def parse_ordo_file(filename, label):
p = re.compile('.*nn-epoch(\\d*)\\.nnue')
with open(filename, 'r') as ordo_file:
rows = []
lines = ordo_file.readlines()
for line in lines:
if 'nn-epoch' in line and label in line:
fields = line.split()
net = fields[1]
epoch = int(p.match(net)[1])
rating = float(fields[3])
error = float(fields[4])
rows.append((net, epoch, rating, error))
return rows
def transpose_list_of_tuples(l):
return list(map(list, zip(*l)))
def do_plots(out_filename, root_dirs, elo_range, loss_range, split):
'''
1. Find tfevents files for each root directory
2. Look for metrics
2.1. Look for 'val_loss'
3. Look for ordo.out
3.1. Parse elo from ordo.
4. Do plots.
'''
tf_size_guidance = {
'compressedHistograms': 10,
'images': 0,
'scalars': 0,
'histograms': 1
}
fig = plt.figure()
fig.set_size_inches(18, 10)
ax_train_loss = fig.add_subplot(311)
ax_val_loss = fig.add_subplot(312)
ax_elo = None
ax_val_loss.set_xlabel('step')
ax_val_loss.set_ylabel('val_loss')
ax_train_loss.set_xlabel('step')
ax_train_loss.set_ylabel('train_loss')
for user_root_dir in root_dirs:
# if asked to split we split the roto dir into a number of user root dirs,
# i.e. all direct subdirectories containing tfevent files.
# we use the ordo file in the root dir, but split the content.
split_root_dirs = [user_root_dir]
if split:
split_root_dirs = []
for item in os.listdir(user_root_dir):
if os.path.isdir(os.path.join(user_root_dir, item)):
root_dir = os.path.join(user_root_dir, item)
if len(find_event_files(root_dir)) > 0:
split_root_dirs.append(root_dir)
split_root_dirs.sort()
for root_dir in split_root_dirs:
print('Processing root_dir {}'.format(root_dir))
tfevents_files = find_event_files(root_dir)
print('Found {} tfevents files.'.format(len(tfevents_files)))
val_losses = collections.defaultdict(lambda: [])
train_losses = collections.defaultdict(lambda: [])
for i, tfevents_file in enumerate(tfevents_files):
print('Processing tfevents file {}/{}: {}'.format(i+1, len(tfevents_files), tfevents_file))
events_acc = EventAccumulator(tfevents_file, tf_size_guidance)
events_acc.Reload()
vv = events_acc.Scalars('val_loss')
print('Found {} val_loss entries.'.format(len(vv)))
minloss = min([v[2] for v in vv])
for v in vv:
if v[2] < minloss + loss_range:
step = v[1]
val_losses[step].append(v[2])
vv = events_acc.Scalars('train_loss')
minloss = min([v[2] for v in vv])
print('Found {} train_loss entries.'.format(len(vv)))
for v in vv:
if v[2] < minloss + loss_range:
step = v[1]
train_losses[step].append(v[2])
print('Aggregating data...')
val_loss = aggregate_dict(val_losses, 'min')
x, y = dict_to_xy(val_loss)
ax_val_loss.plot(x, y, label=root_dir)
train_loss = aggregate_dict(train_losses, 'min')
x, y = dict_to_xy(train_loss)
ax_train_loss.plot(x, y, label=root_dir)
print('Finished aggregating data.')
ordo_file = find_ordo_file(user_root_dir)
if ordo_file:
print('Found ordo file {}'.format(ordo_file))
if ax_elo is None:
ax_elo = fig.add_subplot(313)
ax_elo.set_xlabel('epoch')
ax_elo.set_ylabel('Elo')
for root_dir in split_root_dirs:
rows = parse_ordo_file(ordo_file, root_dir if split else "nnue")
if len(rows) == 0:
continue
rows = sorted(rows, key=lambda x:x[1])
epochs = []
elos = []
errors = []
maxelo = max([row[2] for row in rows])
for row in rows:
epoch = row[1]
elo = row[2]
error = row[3]
if not epoch in epochs:
if elo > maxelo - elo_range:
epochs.append(epoch)
elos.append(elo)
errors.append(error)
print('Found ordo data for {} epochs'.format(len(epochs)))
ax_elo.errorbar(epochs, elos, yerr=errors, label=root_dir)
else:
print('Did not find ordo file. Skipping.')
ax_val_loss.legend()
ax_train_loss.legend()
if ax_elo:
ax_elo.legend()
print('Saving plot at {}'.format(out_filename))
#plt.show()
plt.savefig(out_filename, dpi=300)
def main():
#do_plots('test_plot_out.png', ['../nnue-pytorch-training/experiment_10', '../nnue-pytorch-training/experiment_11'])
parser = argparse.ArgumentParser(
description="Generate plots of losses and Elo for experiments run",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"root_dirs",
type=str,
nargs='+',
help="multiple root directories (containing ordo.out and tensorflow event files)"
)
parser.add_argument(
"--output",
type=str,
default="experiment_loss_Elo.png",
help="Filename of the plot generated",
)
parser.add_argument(
"--elo_range",
type=float,
default=50.0,
help="Limit Elo data shown to the best result - elo_range",
)
parser.add_argument(
"--loss_range",
type=float,
default=0.004,
help="Limit loss data shown to the best result + loss_range",
)
parser.add_argument("--split",
action='store_true',
help="Split the root dirs provided, assumes the ordo file is still at the root, and nets in that ordo file match root_dir/sub_dir/",
)
args = parser.parse_args()
print(args.root_dirs)
do_plots(args.output, args.root_dirs, elo_range = args.elo_range, loss_range = args.loss_range, split = args.split)
if __name__ == '__main__':
main()