-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplanner_plot.cpp
315 lines (260 loc) · 11.2 KB
/
planner_plot.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include <iostream>
#include <vector>
#include <cmath>
#include <tuple>
#include <fstream>
#include <sstream>
#include <Eigen/Geometry>
#include <chrono>
#include "matplotlibcpp.h"
namespace plt = matplotlibcpp;
class LocalPath
{
public:
// Vehicle pose (x, y, theta)
struct Pose
{
double x, y, theta;
};
// Constructor
LocalPath(const std::vector<std::tuple<double, double, double>>& global_path, const Pose& vehicle_pose)
: global_path_(global_path), vehicle_pose_(vehicle_pose), vehicle_index_(0)
{
}
// Update vehicle pose
void updateVehiclePose(const Pose& new_pose)
{
vehicle_pose_ = new_pose;
}
// Limit the search window to reduce redundant searches for waypoints
void findClosestWaypointAhead()
{
const int search_window = 50; // Limit the search to the next 50 points
double min_distance = std::numeric_limits<double>::max();
for (size_t i = vehicle_index_; i < std::min(vehicle_index_ + search_window, global_path_.size()); ++i)
{
const double gx = std::get<0>(global_path_[i]);
const double gy = std::get<1>(global_path_[i]);
const double dx = gx - vehicle_pose_.x;
const double dy = gy - vehicle_pose_.y;
double distance = sqrt(dx * dx + dy * dy);
// Ensure the waypoint is ahead of the vehicle
if (distance < min_distance && dx * cos(vehicle_pose_.theta) + dy * sin(vehicle_pose_.theta) > 0)
{
min_distance = distance;
vehicle_index_ = i;
}
}
}
// Convert the global path to a local path in the vehicle's coordinate system, taking a number of poses ahead of the vehicle
std::vector<std::tuple<double, double, double>> getLocalPathAhead(int num_poses_ahead)
{
std::vector<std::tuple<double, double, double>> local_path;
local_path.emplace_back(0, 0, 0); // Ego-point (0, 0, 0)
findClosestWaypointAhead();
for (size_t i = vehicle_index_; i < vehicle_index_ + num_poses_ahead && i < global_path_.size(); ++i)
{
const double gx = std::get<0>(global_path_[i]);
const double gy = std::get<1>(global_path_[i]);
const double gtheta = std::get<2>(global_path_[i]);
const double dx = gx - vehicle_pose_.x;
const double dy = gy - vehicle_pose_.y;
// Convert global coordinates to local coordinates
double local_x = dx * cos(-vehicle_pose_.theta) - dy * sin(-vehicle_pose_.theta);
double local_y = dx * sin(-vehicle_pose_.theta) + dy * cos(-vehicle_pose_.theta);
double local_theta = normalizeAngle(gtheta - vehicle_pose_.theta);
local_path.emplace_back(local_x, local_y, local_theta);
}
// If not enough points, add the last point repeatedly to match the required number of points
while (local_path.size() < static_cast<size_t>(num_poses_ahead + 1))
{
// +1 because of ego-point
local_path.push_back(local_path.back());
}
return local_path;
}
// Get the global path points ahead of the vehicle
std::vector<std::tuple<double, double, double>> getGlobalPathAhead(int num_poses_ahead)
{
std::vector<std::tuple<double, double, double>> global_path_ahead;
global_path_ahead.emplace_back(vehicle_pose_.x, vehicle_pose_.y, vehicle_pose_.theta);
findClosestWaypointAhead();
for (size_t i = vehicle_index_; i < vehicle_index_ + num_poses_ahead && i < global_path_.size(); ++i)
{
global_path_ahead.push_back(global_path_[i]);
}
// If not enough points, add the last point to match the required number of points
while (global_path_ahead.size() < static_cast<size_t>(num_poses_ahead + 1))
{
// +1 because of ego-point
global_path_ahead.push_back(global_path_ahead.back());
}
return global_path_ahead;
}
// Convert the local path back to global coordinates using the vehicle's pose
[[nodiscard]] std::vector<std::tuple<double, double, double>>
convertLocalToGlobal(const std::vector<std::tuple<double, double, double>>& local_path) const
{
std::vector<std::tuple<double, double, double>> global_path;
for (const auto& point : local_path)
{
double local_x = std::get<0>(point);
double local_y = std::get<1>(point);
double local_theta = std::get<2>(point);
double global_x = vehicle_pose_.x + local_x * cos(vehicle_pose_.theta) - local_y * sin(vehicle_pose_.theta);
double global_y = vehicle_pose_.y + local_x * sin(vehicle_pose_.theta) + local_y * cos(vehicle_pose_.theta);
double global_theta = normalizeAngle(local_theta + vehicle_pose_.theta);
global_path.emplace_back(global_x, global_y, global_theta);
}
return global_path;
}
// Fit a polynomial to a set of waypoints
static Eigen::VectorXd fitPolynomial(const std::vector<std::tuple<double, double>>& waypoints, int order = 3)
{
size_t n = waypoints.size();
if (n < order + 1)
{
std::cerr << "Not enough points to fit a polynomial of order " << order << "." << std::endl;
return Eigen::VectorXd::Zero(order + 1);
}
Eigen::MatrixXd A(n, order + 1);
Eigen::VectorXd b(n);
for (auto i = 0; i < n; ++i)
{
double x = std::get<0>(waypoints[i]);
double y = std::get<1>(waypoints[i]);
for (auto j = 0; j < order + 1; ++j)
{
A(i, j) = pow(x, j);
}
b(i) = y;
}
Eigen::VectorXd coeffs = A.colPivHouseholderQr().solve(b);
return coeffs;
}
// Generate points with heading angle (theta)
static std::vector<std::tuple<double, double, double>>
generatePointsWithHeading(const Eigen::VectorXd& coeffs, double start_x, int num_points, double step)
{
std::vector<std::tuple<double, double, double>> points_with_heading;
double x = start_x;
for (int i = 0; i < num_points; ++i)
{
double y = evaluatePolynomial(coeffs, x);
double dy_dx = evaluateDerivative(coeffs, x);
double theta = atan(dy_dx); // Heading angle in radians
points_with_heading.emplace_back(x, y, theta);
x += step;
}
return points_with_heading;
}
private:
std::vector<std::tuple<double, double, double>> global_path_; // Global path (x, y, theta)
Pose vehicle_pose_; // Vehicle's pose (x, y, theta)
size_t vehicle_index_; // Index of the closest waypoint ahead of the vehicle
static double normalizeAngle(double angle)
{
while (angle > M_PI) angle -= 2.0 * M_PI;
while (angle < -M_PI) angle += 2.0 * M_PI;
return angle;
}
static double evaluatePolynomial(const Eigen::VectorXd& coeffs, const double x)
{
double y = 0.0;
for (int i = 0; i < coeffs.size(); ++i)
{
y += coeffs[i] * pow(x, i);
}
return y;
}
static double evaluateDerivative(const Eigen::VectorXd& coeffs, const double x)
{
double dy_dx = 0.0;
for (int i = 1; i < coeffs.size(); ++i)
{
dy_dx += i * coeffs[i] * pow(x, i - 1);
}
return dy_dx;
}
};
int main()
{
// Step 1: Read global path from file
std::ifstream file("/home/dinhnambkhn/Documents/A_star_matplotlib_cpp/path.txt");
std::vector<std::tuple<double, double, double>> global_path;
std::string line;
while (std::getline(file, line))
{
std::istringstream iss(line);
double time, x, y, z, qx, qy, qz, qw, gear;
if (!(iss >> time >> x >> y >> z >> qx >> qy >> qz >> qw >> gear)) break;
double yaw = atan2(2 * (qw * qz + qx * qy), 1 - 2 * (qy * qy + qz * qz));
global_path.emplace_back(x, y, yaw);
}
// Step 2: Initialize vehicle pose at a starting point
LocalPath::Pose vehicle_pose{std::get<0>(global_path[0]), std::get<1>(global_path[0]), std::get<2>(global_path[0])};
LocalPath local_path(global_path, vehicle_pose);
// Step 3: Animate vehicle movement along the path
for (size_t i = 0; i < global_path.size() - 20; ++i)
{
plt::clf(); // Clear previous plot
// Update vehicle pose to simulate movement along the path
vehicle_pose.x = std::get<0>(global_path[i]);
vehicle_pose.y = std::get<1>(global_path[i]);
vehicle_pose.theta = std::get<2>(global_path[i]);
local_path.updateVehiclePose(vehicle_pose);
// Get global path ahead of the vehicle
auto global_path_ahead = local_path.getGlobalPathAhead(20);
auto local_path_ahead = local_path.getLocalPathAhead(20);
//fit 5-order polynomial to local_path_ahead
std::vector<std::tuple<double, double>> waypoints;
for (const auto& point : local_path_ahead)
{
waypoints.emplace_back(std::get<0>(point), std::get<1>(point));
}
auto start = std::chrono::high_resolution_clock::now();
Eigen::VectorXd coeffs = LocalPath::fitPolynomial(waypoints, 5);
//time end
auto end = std::chrono::high_resolution_clock::now();
// time ms
std::chrono::duration<double, std::milli> elapsed = end - start;
std::cout << "Time taken for getLocalPathAhead: " << elapsed.count() << " ms" << std::endl;
auto points_with_heading = LocalPath::generatePointsWithHeading(coeffs, 0, 15, 0.3);
// Convert local path back to global path
auto global_path_converted = local_path.convertLocalToGlobal(points_with_heading);
// Plot the global_path_converted
std::vector<double> x_converted, y_converted;
for (const auto& point : global_path_converted)
{
x_converted.push_back(std::get<0>(point));
y_converted.push_back(std::get<1>(point));
}
plt::plot(x_converted, y_converted, "rs"); // Red squares for converted global path
// Plot global path
std::vector<double> x_global, y_global;
for (const auto& point : global_path)
{
x_global.push_back(std::get<0>(point));
y_global.push_back(std::get<1>(point));
}
plt::plot(x_global, y_global, "b*"); // Blue dashed line for global path
//plot the global path ahead
std::vector<double> x_global_ahead, y_global_ahead;
for (const auto& point : global_path_ahead)
{
x_global_ahead.push_back(std::get<0>(point));
y_global_ahead.push_back(std::get<1>(point));
}
plt::plot(x_global_ahead, y_global_ahead, "r--"); // Red dashed line for global path ahead
// Plot current vehicle position
plt::plot({vehicle_pose.x}, {vehicle_pose.y}, "yo" ); // Yellow circle for vehicle
// Set plot labels and titles
plt::title("Vehicle Movement Along Path");
plt::xlabel("X");
plt::ylabel("Y");
plt::grid(true);
plt::pause(0.15); // Pause for animation effect (adjust for real-time movement)
}
plt::show(); // Final plot
return 0;
}