forked from emilbjornson/MIMO-channel-estimation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simulationFigure3.m
146 lines (105 loc) · 7.01 KB
/
simulationFigure3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
%This Matlab script can be used to generate Figure 3 in the article:
%
%Emil Björnson, Björn Ottersten, "A Framework for Training-Based Estimation
%in Arbitrarily Correlated Rician MIMO Channels with Rician Disturbance,”
%IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1807-1820,
%March 2010.
%
%Download article: http://kth.diva-portal.org/smash/get/diva2:337243/FULLTEXT01
%
%This is version 1.0 (Last edited: 2014-03-20)
%
%License: This code is licensed under the GPLv2 license. If you in any way
%use this code for research that results in publications, please cite our
%original article listed above.
%
%Please note that the channels are generated randomly, thus the results
%will not be exactly the same as in the paper.
%Initialization
close all;
clear all;
%%Simulation parameters
rng('shuffle'); %Initiate the random number generators with a random seed
%%If rng('shuffle'); is not supported by your Matlab version, you can use
%%the following commands instead:
%randn('state',sum(100*clock));
%Number of coupling matrices that the results are averaged over (it equals 200 in the paper)
nbrOfCouplingMatrices = 100;
Nt = 8; %Number of transmit antennas and length of the training sequence
Nr = 4; %Number of receive antennas
%Range of total training power in the simulation
totalTrainingPower_dB = 0:1:20; %In decibel scale
totalTrainingPower = 10.^(totalTrainingPower_dB/10); %In linear scale
%Scaling factors for the coupling matrices, where alpha^(j-1) is the
%scaling of the jth column.
alphaValues=[0.33 0.66 1];
%Options in the optimization Matlab algorithms used in this simulations
option = optimset('Display','off','TolFun',1e-7,'TolCon',1e-7,'Algorithm','interior-point');
%Minimum amount of power that is allocated in an eigendirection to count
%this eigendirection when computing the training length
closeToZero = 1e-3;
%Placeholders for storing the optimal and heuristic power allocation
powerallocationOptimal = zeros(Nt,length(totalTrainingPower),length(alphaValues),nbrOfCouplingMatrices);
powerallocationHeuristic = zeros(Nt,length(totalTrainingPower),length(alphaValues),nbrOfCouplingMatrices);
%Placeholders for storing the length of the training sequence with optimal
%and heuristic power allocation
trainingLengthOptimal = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,length(alphaValues));
trainingLengthHeuristic = zeros(length(totalTrainingPower),nbrOfCouplingMatrices,length(alphaValues));
%Iteration over each realization of the random channel statistics
for statisticsIndex = 1:nbrOfCouplingMatrices
%Generate coupling matrix V of the Weichselberger model with
%chi-squared distributed variables (with 2 degrees of freedom).
V = abs(randn(Nr,Nt)+1i*randn(Nr,Nt)).^2;
%Iteration over each realization of the different scalings of the
%column in the coupling matrix
for alphaIndex = 1:length(alphaValues)
%Compute the scaled coupling matrix using the current alpha value
Vscaled = V*diag(alphaValues(alphaIndex).^(0:Nt-1));
Vscaled = Nt*Nr*Vscaled/sum(Vscaled(:));
%Compute the covariance matrix for the given coupling matrix
R = diag(Vscaled(:));
R_T = diag(sum(Vscaled,1)); %Compute transmit-side correlation matrix under the Weichselberger model
%Compute the eigenvalues of the channel covariance matrices and
%store them in decreasing order.
eigenvaluesTransmitter = sort(eig(R_T),'descend');
%Equal power allocation is initial point in optimization
trainingpower_initial = ones(Nt,1)/Nt;
%Compute optimal and heuristic power allocation for each total
%training power.
for k = 1:length(totalTrainingPower)
%Compute optimal training power allocation for the MMSE estimator using built-in optimization algorithms
powerallocationOptimal(:,k,alphaIndex,statisticsIndex) = fmincon(@(q) functionMSEmatrix(R,q,Nr),totalTrainingPower(k)*trainingpower_initial,ones(1,Nt),totalTrainingPower(k),[],[],zeros(Nt,1),totalTrainingPower(k)*ones(Nt,1),[],option);
%Compute the optimal training length by checking how many
%training powers that are larger than closeToZero
trainingLengthOptimal(k,statisticsIndex,alphaIndex) = sum(powerallocationOptimal(:,k,alphaIndex,statisticsIndex)>closeToZero);
%Update the initial power allocation as a preperation for the
%next iteration
trainingpower_initial = powerallocationOptimal(:,k,alphaIndex,statisticsIndex)/sum(powerallocationOptimal(:,k,alphaIndex,statisticsIndex));
%Compute heuristic training power allocating according to Heuristic 1
%in the paper, which uses Corollary 1 and Eq. (14) heuristically
alpha_candidates = (totalTrainingPower(k)+cumsum(1./eigenvaluesTransmitter))./(1:Nt)'; %Compute different values on the Lagrange multiplier in Eq. (14), given that 1,2,...,Nt of the eigendirections get non-zero power
optimalIndex = find(alpha_candidates-1./eigenvaluesTransmitter>0 & alpha_candidates-[1./eigenvaluesTransmitter(2:end); Inf]<0); %Find the true Lagrange multiplier alpha by checking which one of the candidates that only turns on the eigendirections that are supposed to be on
powerallocationHeuristic(:,k,alphaIndex,statisticsIndex) = max([alpha_candidates(optimalIndex)-1./eigenvaluesTransmitter zeros(Nt,1)],[],2); %Compute the power allocation according to Eq. (14) using the optimal alpha
%Compute the optimal training length by checking how many
%training powers that are larger than closeToZero
trainingLengthHeuristic(k,statisticsIndex,alphaIndex) = sum(powerallocationHeuristic(:,k,alphaIndex,statisticsIndex)>closeToZero);
end
end
end
%Plot the numerical results
figure; hold on; box on;
plot(totalTrainingPower_dB(1),mean(trainingLengthHeuristic(1,:,1),2),'r-.');
plot(totalTrainingPower_dB(1),mean(trainingLengthOptimal(1,:,1),2),'k-');
legend('Heuristic Training Sequence','Optimal Training Sequence','Location','SouthEast')
plot(totalTrainingPower_dB,mean(trainingLengthOptimal(:,:,1),2),'ko-');
plot(totalTrainingPower_dB,mean(trainingLengthHeuristic(:,:,1),2),'ro-.');
plot(totalTrainingPower_dB,mean(trainingLengthOptimal(:,:,2),2),'k*-');
plot(totalTrainingPower_dB,mean(trainingLengthHeuristic(:,:,2),2),'r*-');
plot(totalTrainingPower_dB,mean(trainingLengthOptimal(:,:,3),2),'kd-');
plot(totalTrainingPower_dB,mean(trainingLengthHeuristic(:,:,3),2),'rd-');
%Write out the alpha-values as text
text(1,mean([trainingLengthHeuristic(3,:,1) trainingLengthOptimal(3,:,1)],2),['\alpha=' num2str(alphaValues(1))]);
text(1,mean([trainingLengthHeuristic(3,:,2) trainingLengthOptimal(3,:,2)],2),['\alpha=' num2str(alphaValues(2))]);
text(1,mean([trainingLengthHeuristic(3,:,3) trainingLengthOptimal(3,:,3)],2),['\alpha=' num2str(alphaValues(3))]);
xlabel('Total Training Power (dB)');
ylabel('Average Optimal Training Length');