-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.yaml
42 lines (34 loc) · 1.31 KB
/
train.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
defaults:
- encoder: temporal_ssl
- learner: temporal_ssl
- dataset: temporal_joint_diff_dataset
- optimizer: adam # tactile_curved_ssl
seed: 42
device: cuda
data_representations: ['image','allegro', 'franka'] # for tactile training we don't need images
learner_type: temporal_ssl # Can be bet, bc_gmm, image_byol, tactile_stacked_byol # tactile_stacked_byol tactile_linear_byol, bc, tactile_byol
self_supervised: false
# Hyperparameters to be used everywhere
batch_size: 64
tactile_image_size: 224 # 224 # This could be changed for stacked or shared architectures
vision_image_size: 480
vision_view_num: 0
train_epochs: 1000
save_frequency: 10
train_dset_split: 0.95
distributed: true
num_workers: 4
world_size: 1
num_gpus: 4
# Data path to be set
# experiment: ${learner_type}_bs_${batch_size}_epochs_${train_epochs}_view_${vision_view_num}_${object}_frame_diff_${dataset.frame_diff}_resnet # Name of the experiment that the models are saved
experiment: small_box_open
data_dir: /data/small_box_final/
checkpoint_dir: ??? # Will be set to hydra dir inside the code
# logger
logger: true # To init logger or not
log_frequency: 1
# hydra configuration - should be received separately
hydra:
run:
dir: /home/aadhithya/Workspace/tactile-learning/franka_allegro/out/${now:%Y.%m.%d}/${now:%H-%M}_${experiment}