Model | Reso | pth link | diffusers | Precision | Description |
---|---|---|---|---|---|
Sana-0.6B | 512px | Sana_600M_512px | Efficient-Large-Model/Sana_600M_512px_diffusers | fp16/fp32 | Multi-Language |
Sana-0.6B | 1024px | Sana_600M_1024px | Efficient-Large-Model/Sana_600M_1024px_diffusers | fp16/fp32 | Multi-Language |
Sana-1.6B | 512px | Sana_1600M_512px | Efficient-Large-Model/Sana_1600M_512px_diffusers | fp16/fp32 | - |
Sana-1.6B | 512px | Sana_1600M_512px_MultiLing | Efficient-Large-Model/Sana_1600M_512px_MultiLing_diffusers | fp16/fp32 | Multi-Language |
Sana-1.6B | 1024px | Sana_1600M_1024px | Efficient-Large-Model/Sana_1600M_1024px_diffusers | fp16/fp32 | - |
Sana-1.6B | 1024px | Sana_1600M_1024px_MultiLing | Efficient-Large-Model/Sana_1600M_1024px_MultiLing_diffusers | fp16/fp32 | Multi-Language |
Sana-1.6B | 1024px | Sana_1600M_1024px_BF16 | Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers | bf16/fp32 | Multi-Language |
❗️Make sure to set variant
and torch_dtype
in diffusers pipelines to the desired precision.
import torch
from diffusers import SanaPipeline
pipe = SanaPipeline.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_diffusers",
variant="fp16",
torch_dtype=torch.float16,
)
pipe.to("cuda")
pipe.vae.to(torch.bfloat16)
pipe.text_encoder.to(torch.bfloat16)
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'
image = pipe(
prompt=prompt,
height=1024,
width=1024,
guidance_scale=5.0,
num_inference_steps=20,
generator=torch.Generator(device="cuda").manual_seed(42),
)[0]
image[0].save("sana.png")
# run `pip install -U diffusers` before use Sana in diffusers
import torch
from diffusers import SanaPAGPipeline
pipe = SanaPAGPipeline.from_pretrained(
"Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers",
variant="bf16",
torch_dtype=torch.bfloat16,
pag_applied_layers="transformer_blocks.8",
)
pipe.to("cuda")
pipe.text_encoder.to(torch.bfloat16)
pipe.vae.to(torch.bfloat16)
prompt = 'a cyberpunk cat with a neon sign that says "Sana"'
image = pipe(
prompt=prompt,
guidance_scale=5.0,
pag_scale=2.0,
num_inference_steps=20,
generator=torch.Generator(device="cuda").manual_seed(42),
)[0]
image[0].save('sana.png')