-
Notifications
You must be signed in to change notification settings - Fork 228
/
Copy pathtrain.py
executable file
·162 lines (143 loc) · 7.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from utils import get_all_data_loaders, prepare_sub_folder, write_loss, get_config, write_2images, Timer
import argparse
from trainer import DGNet_Trainer
import torch.backends.cudnn as cudnn
import torch
import numpy.random as random
try:
from itertools import izip as zip
except ImportError: # will be 3.x series
pass
import os
import sys
import tensorboardX
import shutil
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/latest.yaml', help='Path to the config file.')
parser.add_argument('--output_path', type=str, default='.', help="outputs path")
parser.add_argument('--name', type=str, default='latest_ablation', help="outputs path")
parser.add_argument("--resume", action="store_true")
parser.add_argument('--trainer', type=str, default='DGNet', help="DGNet")
parser.add_argument('--gpu_ids',default='0', type=str,help='gpu_ids: e.g. 0 0,1,2 0,2')
opts = parser.parse_args()
str_ids = opts.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gpu_ids.append(int(str_id))
num_gpu = len(gpu_ids)
cudnn.benchmark = True
# Load experiment setting
if opts.resume:
config = get_config('./outputs/'+opts.name+'/config.yaml')
else:
config = get_config(opts.config)
max_iter = config['max_iter']
display_size = config['display_size']
config['vgg_model_path'] = opts.output_path
# Setup model and data loader
if opts.trainer == 'DGNet':
trainer = DGNet_Trainer(config, gpu_ids)
trainer.cuda()
random.seed(7) #fix random result
train_loader_a, train_loader_b, test_loader_a, test_loader_b = get_all_data_loaders(config)
train_a_rand = random.permutation(train_loader_a.dataset.img_num)[0:display_size]
train_b_rand = random.permutation(train_loader_b.dataset.img_num)[0:display_size]
test_a_rand = random.permutation(test_loader_a.dataset.img_num)[0:display_size]
test_b_rand = random.permutation(test_loader_b.dataset.img_num)[0:display_size]
train_display_images_a = torch.stack([train_loader_a.dataset[i][0] for i in train_a_rand]).cuda()
train_display_images_ap = torch.stack([train_loader_a.dataset[i][2] for i in train_a_rand]).cuda()
train_display_images_b = torch.stack([train_loader_b.dataset[i][0] for i in train_b_rand]).cuda()
train_display_images_bp = torch.stack([train_loader_b.dataset[i][2] for i in train_b_rand]).cuda()
test_display_images_a = torch.stack([test_loader_a.dataset[i][0] for i in test_a_rand]).cuda()
test_display_images_ap = torch.stack([test_loader_a.dataset[i][2] for i in test_a_rand]).cuda()
test_display_images_b = torch.stack([test_loader_b.dataset[i][0] for i in test_b_rand]).cuda()
test_display_images_bp = torch.stack([test_loader_b.dataset[i][2] for i in test_b_rand]).cuda()
# Setup logger and output folders
if not opts.resume:
model_name = os.path.splitext(os.path.basename(opts.config))[0]
train_writer = tensorboardX.SummaryWriter(os.path.join(opts.output_path + "/logs", model_name))
output_directory = os.path.join(opts.output_path + "/outputs", model_name)
checkpoint_directory, image_directory = prepare_sub_folder(output_directory)
shutil.copyfile(opts.config, os.path.join(output_directory, 'config.yaml')) # copy config file to output folder
shutil.copyfile('trainer.py', os.path.join(output_directory, 'trainer.py')) # copy file to output folder
shutil.copyfile('reIDmodel.py', os.path.join(output_directory, 'reIDmodel.py')) # copy file to output folder
shutil.copyfile('networks.py', os.path.join(output_directory, 'networks.py')) # copy file to output folder
else:
train_writer = tensorboardX.SummaryWriter(os.path.join(opts.output_path + "/logs", opts.name))
output_directory = os.path.join(opts.output_path + "/outputs", opts.name)
checkpoint_directory, image_directory = prepare_sub_folder(output_directory)
# Start training
iterations = trainer.resume(checkpoint_directory, hyperparameters=config) if opts.resume else 0
config['epoch_iteration'] = round( train_loader_a.dataset.img_num / config['batch_size'] )
print('Every epoch need %d iterations'%config['epoch_iteration'])
nepoch = 0
print('Note that dataloader may hang with too much nworkers.')
if num_gpu>1:
print('Now you are using %d gpus.'%num_gpu)
trainer.dis_a = torch.nn.DataParallel(trainer.dis_a, gpu_ids)
trainer.dis_b = trainer.dis_a
trainer = torch.nn.DataParallel(trainer, gpu_ids)
while True:
for it, ((images_a,labels_a, pos_a), (images_b, labels_b, pos_b)) in enumerate(zip(train_loader_a, train_loader_b)):
if num_gpu>1:
trainer.module.update_learning_rate()
else:
trainer.update_learning_rate()
images_a, images_b = images_a.cuda().detach(), images_b.cuda().detach()
pos_a, pos_b = pos_a.cuda().detach(), pos_b.cuda().detach()
labels_a, labels_b = labels_a.cuda().detach(), labels_b.cuda().detach()
with Timer("Elapsed time in update: %f"):
# Main training code
x_ab, x_ba, s_a, s_b, f_a, f_b, p_a, p_b, pp_a, pp_b, x_a_recon, x_b_recon, x_a_recon_p, x_b_recon_p = \
trainer.forward(images_a, images_b, pos_a, pos_b)
if num_gpu>1:
trainer.module.dis_update(x_ab.clone(), x_ba.clone(), images_a, images_b, config, num_gpu)
trainer.module.gen_update(x_ab, x_ba, s_a, s_b, f_a, f_b, p_a, p_b, pp_a, pp_b, x_a_recon, x_b_recon, x_a_recon_p, x_b_recon_p, images_a, images_b, pos_a, pos_b, labels_a, labels_b, config, iterations, num_gpu)
else:
trainer.dis_update(x_ab.clone(), x_ba.clone(), images_a, images_b, config, num_gpu=1)
trainer.gen_update(x_ab, x_ba, s_a, s_b, f_a, f_b, p_a, p_b, pp_a, pp_b, x_a_recon, x_b_recon, x_a_recon_p, x_b_recon_p, images_a, images_b, pos_a, pos_b, labels_a, labels_b, config, iterations, num_gpu=1)
torch.cuda.synchronize()
# Dump training stats in log file
if (iterations + 1) % config['log_iter'] == 0:
print("\033[1m Epoch: %02d Iteration: %08d/%08d \033[0m" % (nepoch, iterations + 1, max_iter), end=" ")
if num_gpu==1:
write_loss(iterations, trainer, train_writer)
else:
write_loss(iterations, trainer.module, train_writer)
# Write images
if (iterations + 1) % config['image_save_iter'] == 0:
with torch.no_grad():
if num_gpu>1:
test_image_outputs = trainer.module.sample(test_display_images_a, test_display_images_b)
else:
test_image_outputs = trainer.sample(test_display_images_a, test_display_images_b)
write_2images(test_image_outputs, display_size, image_directory, 'test_%08d' % (iterations + 1))
del test_image_outputs
if (iterations + 1) % config['image_display_iter'] == 0:
with torch.no_grad():
if num_gpu>1:
image_outputs = trainer.module.sample(train_display_images_a, train_display_images_b)
else:
image_outputs = trainer.sample(train_display_images_a, train_display_images_b)
write_2images(image_outputs, display_size, image_directory, 'train_%08d' % (iterations + 1))
del image_outputs
# Save network weights
if (iterations + 1) % config['snapshot_save_iter'] == 0:
if num_gpu>1:
trainer.module.save(checkpoint_directory, iterations)
else:
trainer.save(checkpoint_directory, iterations)
iterations += 1
if iterations >= max_iter:
sys.exit('Finish training')
# Save network weights by epoch number
nepoch = nepoch+1
if(nepoch + 1) % 10 == 0:
if num_gpu>1:
trainer.module.save(checkpoint_directory, iterations)
else:
trainer.save(checkpoint_directory, iterations)