From a87f3e4566f5fb554a1e6371527f4348bc53326e Mon Sep 17 00:00:00 2001 From: Nghia Truong Date: Wed, 20 Dec 2023 16:12:26 -0800 Subject: [PATCH 1/6] Update jni Signed-off-by: Nghia Truong --- src/main/cpp/CMakeLists.txt | 8 +- src/main/cpp/benchmarks/row_conversion.cpp | 100 +- src/main/cpp/src/RowConversionJni.cpp | 74 +- src/main/cpp/src/row_conversion.cu | 2595 -------------------- src/main/cpp/src/row_conversion.hpp | 53 - src/main/cpp/tests/CMakeLists.txt | 3 - src/main/cpp/tests/row_conversion.cpp | 1043 -------- 7 files changed, 82 insertions(+), 3794 deletions(-) delete mode 100644 src/main/cpp/src/row_conversion.cu delete mode 100644 src/main/cpp/src/row_conversion.hpp delete mode 100644 src/main/cpp/tests/row_conversion.cpp diff --git a/src/main/cpp/CMakeLists.txt b/src/main/cpp/CMakeLists.txt index fee3e60b8e..1ad65687e2 100644 --- a/src/main/cpp/CMakeLists.txt +++ b/src/main/cpp/CMakeLists.txt @@ -94,11 +94,8 @@ include(cmake/Modules/ConfigureCUDA.cmake) # set other CUDA compilation flags # ################################################################################################## # * dependencies ---------------------------------------------------------------------------------- -# find libcu++ -include(${rapids-cmake-dir}/cpm/libcudacxx.cmake) - -# find thrust/cub -include(${CUDF_DIR}/cpp/cmake/thirdparty/get_thrust.cmake) +# find CCCL +include(${CUDF_DIR}/cpp/cmake/thirdparty/get_cccl.cmake) # JNI find_package(JNI REQUIRED) @@ -174,7 +171,6 @@ add_library( src/map_utils.cu src/murmur_hash.cu src/parse_uri.cu - src/row_conversion.cu src/timezones.cu src/utilities.cu src/xxhash64.cu diff --git a/src/main/cpp/benchmarks/row_conversion.cpp b/src/main/cpp/benchmarks/row_conversion.cpp index c625342867..f38b4288c9 100644 --- a/src/main/cpp/benchmarks/row_conversion.cpp +++ b/src/main/cpp/benchmarks/row_conversion.cpp @@ -1,5 +1,5 @@ /* - * Copyright (c) 2022, NVIDIA CORPORATION. + * Copyright (c) 2022-2023, NVIDIA CORPORATION. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -24,21 +24,16 @@ #include #include -void fixed_width(nvbench::state& state) -{ +void fixed_width(nvbench::state &state) { cudf::size_type const n_rows{(cudf::size_type)state.get_int64("num_rows")}; auto const direction = state.get_string("direction"); - auto const table = create_random_table(cycle_dtypes({cudf::type_id::INT8, - cudf::type_id::INT32, - cudf::type_id::INT16, - cudf::type_id::INT64, - cudf::type_id::INT32, - cudf::type_id::BOOL8, - cudf::type_id::UINT16, - cudf::type_id::UINT8, - cudf::type_id::UINT64}, - 212), - row_count{n_rows}); + auto const table = create_random_table( + cycle_dtypes( + {cudf::type_id::INT8, cudf::type_id::INT32, cudf::type_id::INT16, + cudf::type_id::INT64, cudf::type_id::INT32, cudf::type_id::BOOL8, + cudf::type_id::UINT16, cudf::type_id::UINT8, cudf::type_id::UINT64}, + 212), + row_count{n_rows}); std::vector schema; cudf::size_type bytes_per_row = 0; @@ -48,15 +43,15 @@ void fixed_width(nvbench::state& state) bytes_per_row += cudf::size_of(t); } - auto rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(table->view()); + auto rows = cudf::convert_to_rows_fixed_width_optimized(table->view()); - state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { + state.exec(nvbench::exec_tag::sync, [&](nvbench::launch &launch) { if (direction == "to row") { - auto _rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(table->view()); + auto _rows = cudf::convert_to_rows_fixed_width_optimized(table->view()); } else { - for (auto const& r : rows) { + for (auto const &r : rows) { cudf::lists_column_view const l(r->view()); - auto out = spark_rapids_jni::convert_from_rows_fixed_width_optimized(l, schema); + auto out = cudf::convert_from_rows_fixed_width_optimized(l, schema); } } }); @@ -65,10 +60,9 @@ void fixed_width(nvbench::state& state) state.add_global_memory_reads(bytes_per_row * table->num_rows()); } -static void variable_or_fixed_width(nvbench::state& state) -{ +static void variable_or_fixed_width(nvbench::state &state) { cudf::size_type const n_rows{(cudf::size_type)state.get_int64("num_rows")}; - auto const direction = state.get_string("direction"); + auto const direction = state.get_string("direction"); auto const include_strings = state.get_string("strings"); if (n_rows > 1 * 1024 * 1024 && include_strings == "include strings") { @@ -76,36 +70,28 @@ static void variable_or_fixed_width(nvbench::state& state) return; } - std::vector const table_types = [&]() -> std::vector { + std::vector const table_types = + [&]() -> std::vector { if (include_strings == "include strings") { - return {cudf::type_id::INT8, - cudf::type_id::INT32, - cudf::type_id::INT16, - cudf::type_id::INT64, - cudf::type_id::INT32, - cudf::type_id::BOOL8, - cudf::type_id::STRING, - cudf::type_id::UINT16, - cudf::type_id::UINT8, - cudf::type_id::UINT64}; + return {cudf::type_id::INT8, cudf::type_id::INT32, + cudf::type_id::INT16, cudf::type_id::INT64, + cudf::type_id::INT32, cudf::type_id::BOOL8, + cudf::type_id::STRING, cudf::type_id::UINT16, + cudf::type_id::UINT8, cudf::type_id::UINT64}; } else { - return {cudf::type_id::INT8, - cudf::type_id::INT32, - cudf::type_id::INT16, - cudf::type_id::INT64, - cudf::type_id::INT32, - cudf::type_id::BOOL8, - cudf::type_id::UINT16, - cudf::type_id::UINT8, - cudf::type_id::UINT64}; + return { + cudf::type_id::INT8, cudf::type_id::INT32, cudf::type_id::INT16, + cudf::type_id::INT64, cudf::type_id::INT32, cudf::type_id::BOOL8, + cudf::type_id::UINT16, cudf::type_id::UINT8, cudf::type_id::UINT64}; } }(); - auto const table = create_random_table(cycle_dtypes(table_types, 155), row_count{n_rows}); + auto const table = + create_random_table(cycle_dtypes(table_types, 155), row_count{n_rows}); std::vector schema; cudf::size_type bytes_per_row = 0; - cudf::size_type string_bytes = 0; + cudf::size_type string_bytes = 0; for (int i = 0; i < table->num_columns(); ++i) { auto t = table->get_column(i).type(); schema.push_back(t); @@ -117,16 +103,16 @@ static void variable_or_fixed_width(nvbench::state& state) } } - auto rows = spark_rapids_jni::convert_to_rows(table->view()); + auto rows = cudf::convert_to_rows(table->view()); - state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { - auto new_rows = spark_rapids_jni::convert_to_rows(table->view()); + state.exec(nvbench::exec_tag::sync, [&](nvbench::launch &launch) { + auto new_rows = cudf::convert_to_rows(table->view()); if (direction == "to row") { - auto _rows = spark_rapids_jni::convert_to_rows(table->view()); + auto _rows = cudf::convert_to_rows(table->view()); } else { - for (auto const& r : rows) { + for (auto const &r : rows) { cudf::lists_column_view const l(r->view()); - auto out = spark_rapids_jni::convert_from_rows(l, schema); + auto out = cudf::convert_from_rows(l, schema); } } }); @@ -136,12 +122,12 @@ static void variable_or_fixed_width(nvbench::state& state) } NVBENCH_BENCH(fixed_width) - .set_name("Fixed Width Only") - .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) - .add_string_axis("direction", {"to row", "from row"}); + .set_name("Fixed Width Only") + .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) + .add_string_axis("direction", {"to row", "from row"}); NVBENCH_BENCH(variable_or_fixed_width) - .set_name("Fixed or Variable Width") - .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) - .add_string_axis("direction", {"to row", "from row"}) - .add_string_axis("strings", {"include strings", "no strings"}); + .set_name("Fixed or Variable Width") + .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) + .add_string_axis("direction", {"to row", "from row"}) + .add_string_axis("strings", {"include strings", "no strings"}); diff --git a/src/main/cpp/src/RowConversionJni.cpp b/src/main/cpp/src/RowConversionJni.cpp index 1fdb8a86b5..6a2c3388d8 100644 --- a/src/main/cpp/src/RowConversionJni.cpp +++ b/src/main/cpp/src/RowConversionJni.cpp @@ -21,42 +21,40 @@ extern "C" { JNIEXPORT jlongArray JNICALL -Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRowsFixedWidthOptimized(JNIEnv* env, - jclass, - jlong input_table) -{ +Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRowsFixedWidthOptimized( + JNIEnv *env, jclass, jlong input_table) { JNI_NULL_CHECK(env, input_table, "input table is null", 0); try { cudf::jni::auto_set_device(env); - cudf::table_view const* n_input_table = reinterpret_cast(input_table); + cudf::table_view const *n_input_table = + reinterpret_cast(input_table); std::vector> cols = - spark_rapids_jni::convert_to_rows_fixed_width_optimized(*n_input_table); + cudf::jni::convert_to_rows_fixed_width_optimized(*n_input_table); int const num_columns = cols.size(); cudf::jni::native_jlongArray outcol_handles(env, num_columns); - std::transform(cols.begin(), cols.end(), outcol_handles.begin(), [](auto& col) { - return cudf::jni::release_as_jlong(col); - }); + std::transform(cols.begin(), cols.end(), outcol_handles.begin(), + [](auto &col) { return cudf::jni::release_as_jlong(col); }); return outcol_handles.get_jArray(); } CATCH_STD(env, 0); } JNIEXPORT jlongArray JNICALL -Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRows(JNIEnv* env, jclass, jlong input_table) -{ +Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRows( + JNIEnv *env, jclass, jlong input_table) { JNI_NULL_CHECK(env, input_table, "input table is null", 0); try { cudf::jni::auto_set_device(env); - cudf::table_view const* n_input_table = reinterpret_cast(input_table); + cudf::table_view const *n_input_table = + reinterpret_cast(input_table); std::vector> cols = - spark_rapids_jni::convert_to_rows(*n_input_table); + cudf::jni::convert_to_rows(*n_input_table); int const num_columns = cols.size(); cudf::jni::native_jlongArray outcol_handles(env, num_columns); - std::transform(cols.begin(), cols.end(), outcol_handles.begin(), [](auto& col) { - return cudf::jni::release_as_jlong(col); - }); + std::transform(cols.begin(), cols.end(), outcol_handles.begin(), + [](auto &col) { return cudf::jni::release_as_jlong(col); }); return outcol_handles.get_jArray(); } CATCH_STD(env, 0); @@ -64,54 +62,56 @@ Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRows(JNIEnv* env, jclass JNIEXPORT jlongArray JNICALL Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRowsFixedWidthOptimized( - JNIEnv* env, jclass, jlong input_column, jintArray types, jintArray scale) -{ + JNIEnv *env, jclass, jlong input_column, jintArray types, jintArray scale) { JNI_NULL_CHECK(env, input_column, "input column is null", 0); JNI_NULL_CHECK(env, types, "types is null", 0); try { cudf::jni::auto_set_device(env); - cudf::lists_column_view const list_input{*reinterpret_cast(input_column)}; + cudf::lists_column_view const list_input{ + *reinterpret_cast(input_column)}; cudf::jni::native_jintArray n_types(env, types); cudf::jni::native_jintArray n_scale(env, scale); if (n_types.size() != n_scale.size()) { - JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, "types and scales must match size", NULL); + JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, + "types and scales must match size", NULL); } std::vector types_vec; - std::transform(n_types.begin(), - n_types.end(), - n_scale.begin(), - std::back_inserter(types_vec), - [](jint type, jint scale) { return cudf::jni::make_data_type(type, scale); }); + std::transform(n_types.begin(), n_types.end(), n_scale.begin(), + std::back_inserter(types_vec), [](jint type, jint scale) { + return cudf::jni::make_data_type(type, scale); + }); std::unique_ptr result = - spark_rapids_jni::convert_from_rows_fixed_width_optimized(list_input, types_vec); + cudf::jni::convert_from_rows_fixed_width_optimized(list_input, + types_vec); return cudf::jni::convert_table_for_return(env, result); } CATCH_STD(env, 0); } -JNIEXPORT jlongArray JNICALL Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRows( - JNIEnv* env, jclass, jlong input_column, jintArray types, jintArray scale) -{ +JNIEXPORT jlongArray JNICALL +Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRows( + JNIEnv *env, jclass, jlong input_column, jintArray types, jintArray scale) { JNI_NULL_CHECK(env, input_column, "input column is null", 0); JNI_NULL_CHECK(env, types, "types is null", 0); try { cudf::jni::auto_set_device(env); - cudf::lists_column_view const list_input{*reinterpret_cast(input_column)}; + cudf::lists_column_view const list_input{ + *reinterpret_cast(input_column)}; cudf::jni::native_jintArray n_types(env, types); cudf::jni::native_jintArray n_scale(env, scale); if (n_types.size() != n_scale.size()) { - JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, "types and scales must match size", NULL); + JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, + "types and scales must match size", NULL); } std::vector types_vec; - std::transform(n_types.begin(), - n_types.end(), - n_scale.begin(), - std::back_inserter(types_vec), - [](jint type, jint scale) { return cudf::jni::make_data_type(type, scale); }); + std::transform(n_types.begin(), n_types.end(), n_scale.begin(), + std::back_inserter(types_vec), [](jint type, jint scale) { + return cudf::jni::make_data_type(type, scale); + }); std::unique_ptr result = - spark_rapids_jni::convert_from_rows(list_input, types_vec); + cudf::jni::convert_from_rows(list_input, types_vec); return cudf::jni::convert_table_for_return(env, result); } CATCH_STD(env, 0); diff --git a/src/main/cpp/src/row_conversion.cu b/src/main/cpp/src/row_conversion.cu deleted file mode 100644 index f2416fb3ab..0000000000 --- a/src/main/cpp/src/row_conversion.cu +++ /dev/null @@ -1,2595 +0,0 @@ -/* - * Copyright (c) 2020-2023, NVIDIA CORPORATION. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "row_conversion.hpp" - -#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 700 -#define ASYNC_MEMCPY_SUPPORTED -#endif - -#if !defined(__CUDA_ARCH__) || defined(ASYNC_MEMCPY_SUPPORTED) -#include -#endif // #if !defined(__CUDA_ARCH__) || defined(ASYNC_MEMCPY_SUPPORTED) - -#include -#include -#include -#include -#include -#include -#include -#include - -namespace { - -constexpr auto JCUDF_ROW_ALIGNMENT = 8; - -constexpr auto MAX_BATCH_SIZE = std::numeric_limits::max(); - -// Number of rows each block processes in the two kernels. Tuned via nsight -constexpr auto NUM_STRING_ROWS_PER_BLOCK_TO_ROWS = 1024; -constexpr auto NUM_STRING_ROWS_PER_BLOCK_FROM_ROWS = 64; -constexpr auto MIN_STRING_BLOCKS = 32; -constexpr auto MAX_STRING_BLOCKS = MAX_BATCH_SIZE; - -constexpr auto NUM_WARPS_IN_BLOCK = 32; - -} // anonymous namespace - -// needed to suppress warning about cuda::barrier -#pragma nv_diag_suppress static_var_with_dynamic_init - -using namespace cudf; -using detail::make_device_uvector_async; -using detail::make_device_uvector_sync; -using rmm::device_uvector; - -#ifdef ASYNC_MEMCPY_SUPPORTED -using cuda::aligned_size_t; -#else -template -using aligned_size_t = size_t; // Local stub for cuda::aligned_size_t. -#endif // ASYNC_MEMCPY_SUPPORTED - -namespace spark_rapids_jni { -namespace detail { - -/* - * This module converts data from row-major to column-major and from column-major to row-major. It - * is a transpose of the data of sorts, but there are a few complicating factors. They are spelled - * out below: - * - * Row Batches: - * The row data has to fit inside a cuDF column, which limits it to 2 gigs currently. The calling - * code attempts to keep the data size under 2 gigs, but due to padding this isn't always the case, - * so being able to break this up into multiple columns is necessary. Internally, this is referred - * to as the row batch, which is a group of rows that will fit into this 2 gig space requirement. - * There are typically 1 of these batches, but there can be 2. - * - * Async Memcpy: - * The CUDA blocks are using memcpy_async, which allows for the device to schedule memcpy operations - * and then wait on them to complete at a later time with a barrier. On Ampere or later hardware - * there is dedicated hardware to do this copy and on pre-Ampere it should generate the same code - * that a hand-rolled loop would generate, so performance should be the same or better than a - * hand-rolled kernel. - * - * Tile Info: - * Each CUDA block will work on a single tile info before exiting. This single tile consumes all - * available shared memory. The kernel reads data into shared memory and then back out from shared - * memory to device memory via memcpy_async. This kernel is completely memory bound. - * - * Batch Data: - * This structure contains all the row batches and some book-keeping data necessary for the batches - * such as row numbers for the batches. - * - * Tiles: - * The tile info describes a tile of data to process. In a GPU with 48KB this equates to about 221 - * bytes in each direction of a table. The tiles are kept as square as possible to attempt to - * coalesce memory operations. The taller a tile is the better coalescing of columns, but row - * coalescing suffers. The wider a tile is the better the row coalescing, but columns coalescing - * suffers. The code attempts to produce a square tile to balance the coalescing. It starts by - * figuring out the optimal byte length and then adding columns to the data until the tile is too - * large. Since rows are different width with different alignment requirements, this isn't typically - * exact. Once a width is found the tiles are generated vertically with that width and height and - * then the process repeats. This means all the tiles will be the same height, but will have - * different widths based on what columns they encompass. Tiles in a vertical row will all have the - * same dimensions. - * - * -------------------------------- - * | 4 5.0f || True 8 3 1 | - * | 3 6.0f || False 3 1 1 | - * | 2 7.0f || True 7 4 1 | - * | 1 8.0f || False 2 5 1 | - * -------------------------------- - * | 0 9.0f || True 6 7 1 | - * ... - */ - -/** - * @brief The CUDA blocks work on one tile_info struct of data. - * This structure defines the workspaces for the blocks. - * - */ -struct tile_info { - int start_col; - int start_row; - int end_col; - int end_row; - int batch_number; - - __device__ inline size_type get_shared_row_size(size_type const* const col_offsets, - size_type const* const col_sizes) const - { - // this calculation is invalid if there are holes in the data such as a variable-width column. - // It is wrong in a safe way in that it will say this row size is larger than it should be, so - // we are not losing data we are just not as efficient as we could be with shared memory. This - // may be a problem if the tile is computed without regard to variable width offset/length sizes - // in that we overrun shared memory. - return util::round_up_unsafe(col_offsets[end_col] + col_sizes[end_col] - col_offsets[start_col], - JCUDF_ROW_ALIGNMENT); - } - - __device__ inline size_type num_cols() const { return end_col - start_col + 1; } - - __device__ inline size_type num_rows() const { return end_row - start_row + 1; } -}; - -/** - * @brief Returning rows is done in a byte cudf column. This is limited in size by - * `size_type` and so output is broken into batches of rows that fit inside - * this limit. - * - */ -struct row_batch { - size_type num_bytes; // number of bytes in this batch - size_type row_count; // number of rows in the batch - device_uvector row_offsets; // offsets column of output cudf column -}; - -/** - * @brief Holds information about the batches of data to be processed - * - */ -struct batch_data { - device_uvector batch_row_offsets; // offsets to each row in incoming data - device_uvector d_batch_row_boundaries; // row numbers for the start of each batch - std::vector - batch_row_boundaries; // row numbers for the start of each batch: 0, 1500, 2700 - std::vector row_batches; // information about each batch such as byte count -}; - -/** - * @brief builds row size information for tables that contain strings - * - * @param tbl table from which to compute row size information - * @param fixed_width_and_validity_size size of fixed-width and validity data in this table - * @param stream cuda stream on which to operate - * @return pair of device vector of size_types of the row sizes of the table and a device vector of - * offsets into the string column - */ -std::pair, rmm::device_uvector> -build_string_row_offsets(table_view const& tbl, - size_type fixed_width_and_validity_size, - rmm::cuda_stream_view stream) -{ - auto const num_rows = tbl.num_rows(); - rmm::device_uvector d_row_sizes(num_rows, stream); - thrust::uninitialized_fill(rmm::exec_policy(stream), d_row_sizes.begin(), d_row_sizes.end(), 0); - - auto d_offsets_iterators = [&]() { - std::vector offsets_iterators; - auto offsets_iter = thrust::make_transform_iterator( - tbl.begin(), [](auto const& col) -> strings_column_view::offset_iterator { - if (!is_fixed_width(col.type())) { - CUDF_EXPECTS(col.type().id() == type_id::STRING, "only string columns are supported!"); - return strings_column_view(col).offsets_begin(); - } else { - return nullptr; - } - }); - std::copy_if(offsets_iter, - offsets_iter + tbl.num_columns(), - std::back_inserter(offsets_iterators), - [](auto const& offset_ptr) { return offset_ptr != nullptr; }); - return make_device_uvector_sync( - offsets_iterators, stream, rmm::mr::get_current_device_resource()); - }(); - - auto const num_columns = static_cast(d_offsets_iterators.size()); - - thrust::for_each(rmm::exec_policy(stream), - thrust::make_counting_iterator(0), - thrust::make_counting_iterator(num_columns * num_rows), - [d_offsets_iterators = d_offsets_iterators.data(), - num_columns, - num_rows, - d_row_sizes = d_row_sizes.data()] __device__(auto element_idx) { - auto const row = element_idx % num_rows; - auto const col = element_idx / num_rows; - auto const val = - d_offsets_iterators[col][row + 1] - d_offsets_iterators[col][row]; - atomicAdd(&d_row_sizes[row], val); - }); - - // transform the row sizes to include fixed width size and alignment - thrust::transform(rmm::exec_policy(stream), - d_row_sizes.begin(), - d_row_sizes.end(), - d_row_sizes.begin(), - [fixed_width_and_validity_size] __device__(auto row_size) { - return util::round_up_unsafe(fixed_width_and_validity_size + row_size, - JCUDF_ROW_ALIGNMENT); - }); - - return {std::move(d_row_sizes), std::move(d_offsets_iterators)}; -} - -/** - * @brief functor to return the offset of a row in a table with string columns - * - */ -struct string_row_offset_functor { - string_row_offset_functor(device_span d_row_offsets) - : d_row_offsets(d_row_offsets){}; - - __device__ inline size_type operator()(int row_number, int) const - { - return d_row_offsets[row_number]; - } - - device_span d_row_offsets; -}; - -/** - * @brief functor to return the offset of a row in a table with only fixed-width columns - * - */ -struct fixed_width_row_offset_functor { - fixed_width_row_offset_functor(size_type fixed_width_only_row_size) - : _fixed_width_only_row_size(fixed_width_only_row_size){}; - - __device__ inline size_type operator()(int row_number, int tile_row_start) const - { - return (row_number - tile_row_start) * _fixed_width_only_row_size; - } - - size_type _fixed_width_only_row_size; -}; - -/** - * @brief Copies data from row-based JCUDF format to column-based cudf format. - * - * This optimized version of the conversion is faster for fixed-width tables that do not have more - * than 100 columns. - * - * @param num_rows number of rows in the incoming table - * @param num_columns number of columns in the incoming table - * @param row_size length in bytes of each row - * @param input_offset_in_row offset to each row of data - * @param num_bytes total number of bytes in the incoming data - * @param output_data array of pointers to the output data - * @param output_nm array of pointers to the output null masks - * @param input_data pointing to the incoming row data - */ -__global__ void copy_from_rows_fixed_width_optimized(const size_type num_rows, - const size_type num_columns, - const size_type row_size, - const size_type* input_offset_in_row, - const size_type* num_bytes, - int8_t** output_data, - bitmask_type** output_nm, - const int8_t* input_data) -{ - // We are going to copy the data in two passes. - // The first pass copies a chunk of data into shared memory. - // The second pass copies that chunk from shared memory out to the final location. - - // Because shared memory is limited we copy a subset of the rows at a time. - // For simplicity we will refer to this as a row_group - - // In practice we have found writing more than 4 columns of data per thread - // results in performance loss. As such we are using a 2 dimensional - // kernel in terms of threads, but not in terms of blocks. Columns are - // controlled by the y dimension (there is no y dimension in blocks). Rows - // are controlled by the x dimension (there are multiple blocks in the x - // dimension). - - size_type const rows_per_group = blockDim.x; - size_type const row_group_start = blockIdx.x; - size_type const row_group_stride = gridDim.x; - size_type const row_group_end = (num_rows + rows_per_group - 1) / rows_per_group + 1; - - extern __shared__ int8_t shared_data[]; - - // Because we are copying fixed width only data and we stride the rows - // this thread will always start copying from shared data in the same place - int8_t* row_tmp = &shared_data[row_size * threadIdx.x]; - int8_t* row_vld_tmp = &row_tmp[input_offset_in_row[num_columns - 1] + num_bytes[num_columns - 1]]; - - for (auto row_group_index = row_group_start; row_group_index < row_group_end; - row_group_index += row_group_stride) { - // Step 1: Copy the data into shared memory - // We know row_size is always aligned with and a multiple of int64_t; - int64_t* long_shared = reinterpret_cast(shared_data); - int64_t const* long_input = reinterpret_cast(input_data); - - auto const shared_output_index = threadIdx.x + (threadIdx.y * blockDim.x); - auto const shared_output_stride = blockDim.x * blockDim.y; - auto const row_index_end = std::min(num_rows, ((row_group_index + 1) * rows_per_group)); - auto const num_rows_in_group = row_index_end - (row_group_index * rows_per_group); - auto const shared_length = row_size * num_rows_in_group; - - size_type const shared_output_end = shared_length / sizeof(int64_t); - - auto const start_input_index = (row_size * row_group_index * rows_per_group) / sizeof(int64_t); - - for (size_type shared_index = shared_output_index; shared_index < shared_output_end; - shared_index += shared_output_stride) { - long_shared[shared_index] = long_input[start_input_index + shared_index]; - } - // Wait for all of the data to be in shared memory - __syncthreads(); - - // Step 2 copy the data back out - - // Within the row group there should be 1 thread for each row. This is a - // requirement for launching the kernel - auto const row_index = (row_group_index * rows_per_group) + threadIdx.x; - // But we might not use all of the threads if the number of rows does not go - // evenly into the thread count. We don't want those threads to exit yet - // because we may need them to copy data in for the next row group. - uint32_t active_mask = __ballot_sync(0xffffffff, row_index < num_rows); - if (row_index < num_rows) { - auto const col_index_start = threadIdx.y; - auto const col_index_stride = blockDim.y; - for (auto col_index = col_index_start; col_index < num_columns; - col_index += col_index_stride) { - auto const col_size = num_bytes[col_index]; - int8_t const* col_tmp = &(row_tmp[input_offset_in_row[col_index]]); - int8_t* col_output = output_data[col_index]; - switch (col_size) { - case 1: { - col_output[row_index] = *col_tmp; - break; - } - case 2: { - int16_t* short_col_output = reinterpret_cast(col_output); - short_col_output[row_index] = *reinterpret_cast(col_tmp); - break; - } - case 4: { - int32_t* int_col_output = reinterpret_cast(col_output); - int_col_output[row_index] = *reinterpret_cast(col_tmp); - break; - } - case 8: { - int64_t* long_col_output = reinterpret_cast(col_output); - long_col_output[row_index] = *reinterpret_cast(col_tmp); - break; - } - default: { - auto const output_offset = col_size * row_index; - // TODO this should just not be supported for fixed width columns, but just in case... - for (auto b = 0; b < col_size; b++) { - col_output[b + output_offset] = col_tmp[b]; - } - break; - } - } - - bitmask_type* nm = output_nm[col_index]; - int8_t* valid_byte = &row_vld_tmp[col_index / 8]; - size_type byte_bit_offset = col_index % 8; - int predicate = *valid_byte & (1 << byte_bit_offset); - uint32_t bitmask = __ballot_sync(active_mask, predicate); - if (row_index % 32 == 0) { nm[word_index(row_index)] = bitmask; } - } // end column loop - } // end row copy - // wait for the row_group to be totally copied before starting on the next row group - __syncthreads(); - } -} - -__global__ void copy_to_rows_fixed_width_optimized(const size_type start_row, - const size_type num_rows, - const size_type num_columns, - const size_type row_size, - const size_type* output_offset_in_row, - const size_type* num_bytes, - const int8_t** input_data, - const bitmask_type** input_nm, - int8_t* output_data) -{ - // We are going to copy the data in two passes. - // The first pass copies a chunk of data into shared memory. - // The second pass copies that chunk from shared memory out to the final location. - - // Because shared memory is limited we copy a subset of the rows at a time. - // We do not support copying a subset of the columns in a row yet, so we don't - // currently support a row that is wider than shared memory. - // For simplicity we will refer to this as a row_group - - // In practice we have found reading more than 4 columns of data per thread - // results in performance loss. As such we are using a 2 dimensional - // kernel in terms of threads, but not in terms of blocks. Columns are - // controlled by the y dimension (there is no y dimension in blocks). Rows - // are controlled by the x dimension (there are multiple blocks in the x - // dimension). - - size_type rows_per_group = blockDim.x; - size_type row_group_start = blockIdx.x; - size_type row_group_stride = gridDim.x; - size_type row_group_end = (num_rows + rows_per_group - 1) / rows_per_group + 1; - - extern __shared__ int8_t shared_data[]; - - // Because we are copying fixed width only data and we stride the rows - // this thread will always start copying to shared data in the same place - int8_t* row_tmp = &shared_data[row_size * threadIdx.x]; - int8_t* row_vld_tmp = - &row_tmp[output_offset_in_row[num_columns - 1] + num_bytes[num_columns - 1]]; - - for (size_type row_group_index = row_group_start; row_group_index < row_group_end; - row_group_index += row_group_stride) { - // Within the row group there should be 1 thread for each row. This is a - // requirement for launching the kernel - size_type row_index = start_row + (row_group_index * rows_per_group) + threadIdx.x; - // But we might not use all of the threads if the number of rows does not go - // evenly into the thread count. We don't want those threads to exit yet - // because we may need them to copy data back out. - if (row_index < (start_row + num_rows)) { - size_type col_index_start = threadIdx.y; - size_type col_index_stride = blockDim.y; - for (size_type col_index = col_index_start; col_index < num_columns; - col_index += col_index_stride) { - size_type col_size = num_bytes[col_index]; - int8_t* col_tmp = &(row_tmp[output_offset_in_row[col_index]]); - const int8_t* col_input = input_data[col_index]; - switch (col_size) { - case 1: { - *col_tmp = col_input[row_index]; - break; - } - case 2: { - const int16_t* short_col_input = reinterpret_cast(col_input); - *reinterpret_cast(col_tmp) = short_col_input[row_index]; - break; - } - case 4: { - const int32_t* int_col_input = reinterpret_cast(col_input); - *reinterpret_cast(col_tmp) = int_col_input[row_index]; - break; - } - case 8: { - const int64_t* long_col_input = reinterpret_cast(col_input); - *reinterpret_cast(col_tmp) = long_col_input[row_index]; - break; - } - default: { - size_type input_offset = col_size * row_index; - // TODO this should just not be supported for fixed width columns, but just in case... - for (size_type b = 0; b < col_size; b++) { - col_tmp[b] = col_input[b + input_offset]; - } - break; - } - } - // atomicOr only works on 32 bit or 64 bit aligned values, and not byte aligned - // so we have to rewrite the addresses to make sure that it is 4 byte aligned - int8_t* valid_byte = &row_vld_tmp[col_index / 8]; - size_type byte_bit_offset = col_index % 8; - uint64_t fixup_bytes = reinterpret_cast(valid_byte) % 4; - int32_t* valid_int = reinterpret_cast(valid_byte - fixup_bytes); - size_type int_bit_offset = byte_bit_offset + (fixup_bytes * 8); - // Now copy validity for the column - if (input_nm[col_index]) { - if (bit_is_set(input_nm[col_index], row_index)) { - atomicOr_block(valid_int, 1 << int_bit_offset); - } else { - atomicAnd_block(valid_int, ~(1 << int_bit_offset)); - } - } else { - // It is valid so just set the bit - atomicOr_block(valid_int, 1 << int_bit_offset); - } - } // end column loop - } // end row copy - // wait for the row_group to be totally copied into shared memory - __syncthreads(); - - // Step 2: Copy the data back out - // We know row_size is always aligned with and a multiple of int64_t; - int64_t* long_shared = reinterpret_cast(shared_data); - int64_t* long_output = reinterpret_cast(output_data); - - size_type shared_input_index = threadIdx.x + (threadIdx.y * blockDim.x); - size_type shared_input_stride = blockDim.x * blockDim.y; - size_type row_index_end = ((row_group_index + 1) * rows_per_group); - if (row_index_end > num_rows) { row_index_end = num_rows; } - size_type num_rows_in_group = row_index_end - (row_group_index * rows_per_group); - size_type shared_length = row_size * num_rows_in_group; - - size_type shared_input_end = shared_length / sizeof(int64_t); - - size_type start_output_index = (row_size * row_group_index * rows_per_group) / sizeof(int64_t); - - for (size_type shared_index = shared_input_index; shared_index < shared_input_end; - shared_index += shared_input_stride) { - long_output[start_output_index + shared_index] = long_shared[shared_index]; - } - __syncthreads(); - // Go for the next round - } -} - -#ifdef ASYNC_MEMCPY_SUPPORTED -#define MEMCPY(dst, src, size, barrier) cuda::memcpy_async(dst, src, size, barrier) -#else -#define MEMCPY(dst, src, size, barrier) memcpy(dst, src, size) -#endif // ASYNC_MEMCPY_SUPPORTED - -/** - * @brief copy data from cudf columns into JCUDF format, which is row-based - * - * @tparam RowOffsetFunctor iterator that gives the size of a specific row of the table. - * @param num_rows total number of rows in the table - * @param num_columns total number of columns in the table - * @param shmem_used_per_tile shared memory amount each `tile_info` is using - * @param tile_infos span of `tile_info` structs the define the work - * @param input_data pointer to raw table data - * @param col_sizes array of sizes for each element in a column - one per column - * @param col_offsets offset into input data row for each column's start - * @param row_offsets offset to a specific row in the output data - * @param batch_row_boundaries row numbers for batch starts - * @param output_data pointer to output data - * - */ -template -__global__ void copy_to_rows(const size_type num_rows, - const size_type num_columns, - const size_type shmem_used_per_tile, - device_span tile_infos, - const int8_t** input_data, - const size_type* col_sizes, - const size_type* col_offsets, - RowOffsetFunctor row_offsets, - size_type const* batch_row_boundaries, - int8_t** output_data) -{ - // We are going to copy the data in two passes. - // The first pass copies a chunk of data into shared memory. - // The second pass copies that chunk from shared memory out to the final location. - - // Because shared memory is limited we copy a subset of the rows at a time. - // This has been broken up for us in the tile_info struct, so we don't have - // any calculation to do here, but it is important to note. - - auto const group = cooperative_groups::this_thread_block(); - auto const warp = cooperative_groups::tiled_partition(group); - extern __shared__ int8_t shared_data[]; - -#ifdef ASYNC_MEMCPY_SUPPORTED - __shared__ cuda::barrier tile_barrier; - if (group.thread_rank() == 0) { init(&tile_barrier, group.size()); } - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED - - auto const tile = tile_infos[blockIdx.x]; - auto const num_tile_cols = tile.num_cols(); - auto const num_tile_rows = tile.num_rows(); - auto const tile_row_size = tile.get_shared_row_size(col_offsets, col_sizes); - auto const starting_column_offset = col_offsets[tile.start_col]; - - // to do the copy we need to do n column copies followed by m element copies OR we have to do m - // element copies followed by r row copies. When going from column to row it is much easier to - // copy by elements first otherwise we would need a running total of the column sizes for our - // tile, which isn't readily available. This makes it more appealing to copy element-wise from - // input data into shared matching the end layout and do row-based memcopies out. - - // read each column across the tile - // each warp takes a column with each thread of a warp taking a row this is done with cooperative - // groups where each column is chosen by the tiled partition and each thread in that partition - // works on a row - for (int relative_col = warp.meta_group_rank(); relative_col < num_tile_cols; - relative_col += warp.meta_group_size()) { - auto const absolute_col = relative_col + tile.start_col; - auto const col_size = col_sizes[absolute_col]; - auto const col_offset = col_offsets[absolute_col]; - auto const relative_col_offset = col_offset - starting_column_offset; - auto const col_ptr = input_data[absolute_col]; - - if (col_ptr == nullptr) { - // variable-width data column - continue; - } - - for (int relative_row = warp.thread_rank(); relative_row < num_tile_rows; - relative_row += warp.size()) { - if (relative_row >= num_tile_rows) { - // out of bounds - continue; - } - auto const absolute_row = relative_row + tile.start_row; - - auto const shared_offset = relative_row * tile_row_size + relative_col_offset; - auto const input_src = col_ptr + col_size * absolute_row; - - // copy the element from global memory - switch (col_size) { - case 2: { - const int16_t* short_col_input = reinterpret_cast(input_src); - *reinterpret_cast(&shared_data[shared_offset]) = *short_col_input; - break; - } - case 4: { - const int32_t* int_col_input = reinterpret_cast(input_src); - *reinterpret_cast(&shared_data[shared_offset]) = *int_col_input; - break; - } - case 8: { - const int64_t* long_col_input = reinterpret_cast(input_src); - *reinterpret_cast(&shared_data[shared_offset]) = *long_col_input; - break; - } - case 1: shared_data[shared_offset] = *input_src; break; - default: { - for (int i = 0; i < col_size; ++i) { - shared_data[shared_offset] = *input_src; - } - break; - } - } - } - } - - auto const tile_output_buffer = output_data[tile.batch_number]; - auto const row_batch_start = tile.batch_number == 0 ? 0 : batch_row_boundaries[tile.batch_number]; - - // no async copies above waiting on the barrier, so we sync the group here to ensure all copies to - // shared memory are completed before copying data out - group.sync(); - - // each warp takes a row - for (int copy_row = warp.meta_group_rank(); copy_row < tile.num_rows(); - copy_row += warp.meta_group_size()) { - auto const src = &shared_data[tile_row_size * copy_row]; - auto const dst = tile_output_buffer + row_offsets(copy_row + tile.start_row, row_batch_start) + - starting_column_offset; -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::memcpy_async(warp, dst, src, tile_row_size, tile_barrier); -#else - for (int b = warp.thread_rank(); b < tile_row_size; b += warp.size()) { - dst[b] = src[b]; - } -#endif - } - -#ifdef ASYNC_MEMCPY_SUPPORTED - // wait on the last copies to complete - tile_barrier.arrive_and_wait(); -#else - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED -} - -/** - * @brief copy data from row-based format to cudf columns - * - * @tparam RowOffsetFunctor iterator that gives the size of a specific row of the table. - * @param num_rows total number of rows in the table - * @param num_columns total number of columns in the table - * @param shmem_used_per_tile amount of shared memory that is used by a tile - * @param row_offsets offset to a specific row in the output data - * @param batch_row_boundaries row numbers for batch starts - * @param output_data pointer to output data, partitioned by data size - * @param validity_offsets offset into input data row for validity data - * @param tile_infos information about the tiles of work - * @param input_nm pointer to input data - * - */ -template -__global__ void copy_validity_to_rows(const size_type num_rows, - const size_type num_columns, - const size_type shmem_used_per_tile, - RowOffsetFunctor row_offsets, - size_type const* batch_row_boundaries, - int8_t** output_data, - const size_type validity_offset, - device_span tile_infos, - const bitmask_type** input_nm) -{ - extern __shared__ int8_t shared_data[]; - - // each thread of warp reads a single int32 of validity - so we read 128 bytes then ballot_sync - // the bits and write the result to shmem after we fill shared mem memcpy it out in a blob. - auto const group = cooperative_groups::this_thread_block(); - auto const warp = cooperative_groups::tiled_partition(group); - -#ifdef ASYNC_MEMCPY_SUPPORTED - // Initialize cuda barriers for each tile. - __shared__ cuda::barrier shared_tile_barrier; - if (group.thread_rank() == 0) { init(&shared_tile_barrier, group.size()); } - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED - - auto tile = tile_infos[blockIdx.x]; - auto const num_tile_cols = tile.num_cols(); - auto const num_tile_rows = tile.num_rows(); - - auto const threads_per_warp = warp.size(); - auto const rows_per_read = cudf::detail::size_in_bits(); - - auto const num_sections_x = util::div_rounding_up_unsafe(num_tile_cols, threads_per_warp); - auto const num_sections_y = util::div_rounding_up_unsafe(num_tile_rows, rows_per_read); - auto const validity_data_row_length = util::round_up_unsafe( - util::div_rounding_up_unsafe(num_tile_cols, CHAR_BIT), JCUDF_ROW_ALIGNMENT); - auto const total_sections = num_sections_x * num_sections_y; - - // the tile is divided into sections. A warp operates on a section at a time. - for (int my_section_idx = warp.meta_group_rank(); my_section_idx < total_sections; - my_section_idx += warp.meta_group_size()) { - // convert to rows and cols - auto const section_x = my_section_idx % num_sections_x; - auto const section_y = my_section_idx / num_sections_x; - auto const relative_col = section_x * threads_per_warp + warp.thread_rank(); - auto const relative_row = section_y * rows_per_read; - auto const absolute_col = relative_col + tile.start_col; - auto const absolute_row = relative_row + tile.start_row; - auto const participating = absolute_col < num_columns && absolute_row < num_rows; - auto const participation_mask = __ballot_sync(0xFFFFFFFF, participating); - - if (participating) { - auto my_data = input_nm[absolute_col] != nullptr - ? input_nm[absolute_col][word_index(absolute_row)] - : std::numeric_limits::max(); - - // every thread that is participating in the warp has 4 bytes, but it's column-based data and - // we need it in row-based. So we shuffle the bits around with ballot_sync to make the bytes - // we actually write. - bitmask_type dw_mask = 0x1; - for (int i = 0; i < threads_per_warp && relative_row + i < num_rows; ++i, dw_mask <<= 1) { - auto validity_data = __ballot_sync(participation_mask, my_data & dw_mask); - // lead thread in each warp writes data - auto const validity_write_offset = - validity_data_row_length * (relative_row + i) + (relative_col / CHAR_BIT); - if (warp.thread_rank() == 0) { - *reinterpret_cast(&shared_data[validity_write_offset]) = validity_data; - } - } - } - } - - auto const output_data_base = - output_data[tile.batch_number] + validity_offset + tile.start_col / CHAR_BIT; - - // each warp copies a row at a time - auto const row_bytes = util::div_rounding_up_unsafe(num_tile_cols, CHAR_BIT); - auto const row_batch_start = tile.batch_number == 0 ? 0 : batch_row_boundaries[tile.batch_number]; - - // make sure entire tile has finished copy - // Note that this was copied from above just under the for loop due to nsight complaints about - // divergent threads - group.sync(); - - for (int relative_row = warp.meta_group_rank(); relative_row < num_tile_rows; - relative_row += warp.meta_group_size()) { - auto const src = &shared_data[validity_data_row_length * relative_row]; - auto const dst = output_data_base + row_offsets(relative_row + tile.start_row, row_batch_start); -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::memcpy_async(warp, dst, src, row_bytes, shared_tile_barrier); -#else - for (int b = warp.thread_rank(); b < row_bytes; b += warp.size()) { - dst[b] = src[b]; - } -#endif - } - -#ifdef ASYNC_MEMCPY_SUPPORTED - // wait for tile of data to arrive - shared_tile_barrier.arrive_and_wait(); -#else - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED -} - -/** - * @brief kernel to copy string data to JCUDF row format - * - * @tparam RowOffsetFunctor iterator for row offsets into the destination data - * @param num_rows number of rows in this portion of the table - * @param num_variable_columns number of columns of variable-width data - * @param variable_input_data variable width data column pointers - * @param variable_col_output_offsets output offset information for variable-width columns - * @param variable_col_offsets input offset information for variable-width columns - * @param fixed_width_row_size offset to variable-width data in a row - * @param row_offsets offsets for each row in output data - * @param batch_row_offset row start for this batch - * @param output_data pointer to output data for this batch - * - */ -template -__global__ void copy_strings_to_rows(size_type const num_rows, - size_type const num_variable_columns, - int8_t const** variable_input_data, - size_type const* variable_col_output_offsets, - size_type const** variable_col_offsets, - size_type fixed_width_row_size, - RowOffsetFunctor row_offsets, - size_type const batch_row_offset, - int8_t* output_data) -{ - // Each block will take a group of rows controlled by NUM_STRING_ROWS_PER_BLOCK_TO_ROWS. Each warp - // will copy a row at a time. The base thread will first go through column data and fill out - // offset/length information for the column. Then all threads of the warp will participate in the - // memcpy of the string data. - auto const my_block = cooperative_groups::this_thread_block(); - auto const warp = cooperative_groups::tiled_partition(my_block); -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::barrier block_barrier; -#endif - - auto const start_row = - blockIdx.x * NUM_STRING_ROWS_PER_BLOCK_TO_ROWS + warp.meta_group_rank() + batch_row_offset; - auto const end_row = - std::min(num_rows, static_cast(start_row + NUM_STRING_ROWS_PER_BLOCK_TO_ROWS)); - - for (int row = start_row; row < end_row; row += warp.meta_group_size()) { - auto offset = fixed_width_row_size; // initial offset to variable-width data - auto const base_row_offset = row_offsets(row, 0); - for (int col = 0; col < num_variable_columns; ++col) { - auto const string_start_offset = variable_col_offsets[col][row]; - auto const string_length = variable_col_offsets[col][row + 1] - string_start_offset; - if (warp.thread_rank() == 0) { - // write the offset/length to column - uint32_t* output_dest = reinterpret_cast( - &output_data[base_row_offset + variable_col_output_offsets[col]]); - output_dest[0] = offset; - output_dest[1] = string_length; - } - auto string_output_dest = &output_data[base_row_offset + offset]; - auto string_output_src = &variable_input_data[col][string_start_offset]; - warp.sync(); -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::memcpy_async(warp, string_output_dest, string_output_src, string_length, block_barrier); -#else - for (int c = warp.thread_rank(); c < string_length; c += warp.size()) { - string_output_dest[c] = string_output_src[c]; - } -#endif - offset += string_length; - } - } -} -/** - * @brief copy data from row-based format to cudf columns - * - * @tparam RowOffsetFunctor iterator that gives the size of a specific row of the table. - * @param num_rows total number of rows in the table - * @param num_columns total number of columns in the table - * @param shmem_used_per_tile amount of shared memory that is used by a tile - * @param row_offsets offset to a specific row in the input data - * @param batch_row_boundaries row numbers for batch starts - * @param output_data pointers to column data - * @param col_sizes array of sizes for each element in a column - one per column - * @param col_offsets offset into input data row for each column's start - * @param tile_infos information about the tiles of work - * @param input_data pointer to input data - * - */ -template -__global__ void copy_from_rows(const size_type num_rows, - const size_type num_columns, - const size_type shmem_used_per_tile, - RowOffsetFunctor row_offsets, - size_type const* batch_row_boundaries, - int8_t** output_data, - const size_type* col_sizes, - const size_type* col_offsets, - device_span tile_infos, - const int8_t* input_data) -{ - // We are going to copy the data in two passes. - // The first pass copies a chunk of data into shared memory. - // The second pass copies that chunk from shared memory out to the final location. - - // Because shared memory is limited we copy a subset of the rows at a time. This has been broken - // up for us in the tile_info struct, so we don't have any calculation to do here, but it is - // important to note. - - // To speed up some of the random access memory we do, we copy col_sizes and col_offsets to shared - // memory for each of the tiles that we work on - - auto const group = cooperative_groups::this_thread_block(); - auto const warp = cooperative_groups::tiled_partition(group); - extern __shared__ int8_t shared[]; - -#ifdef ASYNC_MEMCPY_SUPPORTED - // Initialize cuda barriers for each tile. - __shared__ cuda::barrier tile_barrier; - if (group.thread_rank() == 0) { init(&tile_barrier, group.size()); } - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED - - { - auto const fetch_tile = tile_infos[blockIdx.x]; - auto const fetch_tile_start_row = fetch_tile.start_row; - auto const starting_col_offset = col_offsets[fetch_tile.start_col]; - auto const fetch_tile_row_size = fetch_tile.get_shared_row_size(col_offsets, col_sizes); - auto const row_batch_start = - fetch_tile.batch_number == 0 ? 0 : batch_row_boundaries[fetch_tile.batch_number]; - - for (int absolute_row = warp.meta_group_rank() + fetch_tile.start_row; - absolute_row <= fetch_tile.end_row; - absolute_row += warp.meta_group_size()) { - warp.sync(); - auto shared_offset = (absolute_row - fetch_tile_start_row) * fetch_tile_row_size; - auto dst = &shared[shared_offset]; - auto src = &input_data[row_offsets(absolute_row, row_batch_start) + starting_col_offset]; - // copy the data -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::memcpy_async(warp, dst, src, fetch_tile_row_size, tile_barrier); -#else - for (int b = warp.thread_rank(); b < fetch_tile_row_size; b += warp.size()) { - dst[b] = src[b]; - } -#endif - } - } - - { - auto const tile = tile_infos[blockIdx.x]; - auto const rows_in_tile = tile.num_rows(); - auto const cols_in_tile = tile.num_cols(); - auto const tile_row_size = tile.get_shared_row_size(col_offsets, col_sizes); - -#ifdef ASYNC_MEMCPY_SUPPORTED - // ensure our data is ready - tile_barrier.arrive_and_wait(); -#else - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED - - // Now we copy from shared memory to final destination. The data is laid out in rows in shared - // memory, so the reads for a column will be "vertical". Because of this and the different sizes - // for each column, this portion is handled on row/column basis. to prevent each thread working - // on a single row and also to ensure that all threads can do work in the case of more threads - // than rows, we do a global index instead of a double for loop with col/row. - for (int relative_row = warp.thread_rank(); relative_row < rows_in_tile; - relative_row += warp.size()) { - auto const absolute_row = relative_row + tile.start_row; - auto const shared_memory_row_offset = tile_row_size * relative_row; - - for (int relative_col = warp.meta_group_rank(); relative_col < cols_in_tile; - relative_col += warp.meta_group_size()) { - auto const absolute_col = relative_col + tile.start_col; - - auto const shared_memory_offset = - col_offsets[absolute_col] - col_offsets[tile.start_col] + shared_memory_row_offset; - auto const column_size = col_sizes[absolute_col]; - - int8_t* shmem_src = &shared[shared_memory_offset]; - int8_t* dst = &output_data[absolute_col][absolute_row * column_size]; - - MEMCPY(dst, shmem_src, column_size, tile_barrier); - } - } - } - -#ifdef ASYNC_MEMCPY_SUPPORTED - // wait on the last copies to complete - tile_barrier.arrive_and_wait(); -#else - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED -} - -/** - * @brief copy data from row-based format to cudf columns - * - * @tparam RowOffsetFunctor iterator that gives the size of a specific row of the table. - * @param num_rows total number of rows in the table - * @param num_columns total number of columns in the table - * @param shmem_used_per_tile amount of shared memory that is used by a tile - * @param row_offsets offset to the first column a specific row in the input data - * @param batch_row_boundaries row numbers for batch starts - * @param output_nm pointers to null masks for columns - * @param validity_offsets offset into input data row for validity data - * @param tile_infos information about the tiles of work - * @param input_data pointer to input data - * - */ -template -__global__ void copy_validity_from_rows(const size_type num_rows, - const size_type num_columns, - const size_type shmem_used_per_tile, - RowOffsetFunctor row_offsets, - size_type const* batch_row_boundaries, - bitmask_type** output_nm, - const size_type validity_offset, - device_span tile_infos, - const int8_t* input_data) -{ - extern __shared__ int8_t shared[]; - - using cudf::detail::warp_size; - - // each thread of warp reads a single byte of validity - so we read 32 bytes then ballot_sync the - // bits and write the result to shmem after we fill shared mem memcpy it out in a blob. Probably - // need knobs for number of rows vs columns to balance read/write - - // C0 C1 C2 C3 C4 C5 C6 C7 - // R0 1 0 1 0 0 1 1 0 <-- thread 0 reads byte r0 - // R1 1 1 1 1 1 1 1 0 <-- thread 1 reads byte r1 - // R2 0 0 1 0 0 1 1 0 <-- thread 2 reads byte r2 - // ... - // R31 1 1 1 1 1 1 1 1 <-- thread 31 reads byte r31 - // ^ - // | 1 bit of each input byte, by column, are swizzled into a single 32 bit word via - // __ballot_sync, representing 32 rows of that column. - - auto const group = cooperative_groups::this_thread_block(); - auto const warp = cooperative_groups::tiled_partition(group); - -#ifdef ASYNC_MEMCPY_SUPPORTED - // Initialize cuda barriers for each tile. - __shared__ cuda::barrier shared_tile_barrier; - if (group.thread_rank() == 0) { init(&shared_tile_barrier, group.size()); } - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED - - auto const tile = tile_infos[blockIdx.x]; - auto const tile_start_col = tile.start_col; - auto const tile_start_row = tile.start_row; - auto const num_tile_cols = tile.num_cols(); - auto const num_tile_rows = tile.num_rows(); - - auto const threads_per_warp = warp.size(); - auto const cols_per_read = CHAR_BIT; - - auto const rows_per_read = static_cast(threads_per_warp); - auto const num_sections_x = util::div_rounding_up_safe(num_tile_cols, cols_per_read); - auto const num_sections_y = util::div_rounding_up_safe(num_tile_rows, rows_per_read); - auto const validity_data_col_length = num_sections_y * 4; // words to bytes - auto const total_sections = num_sections_x * num_sections_y; - - // the tile is divided into sections. A warp operates on a section at a time. - for (int my_section_idx = warp.meta_group_rank(); my_section_idx < total_sections; - my_section_idx += warp.meta_group_size()) { - // convert section to row and col - auto const section_x = my_section_idx % num_sections_x; - auto const section_y = my_section_idx / num_sections_x; - auto const relative_col = section_x * cols_per_read; - auto const relative_row = section_y * rows_per_read + warp.thread_rank(); - auto const absolute_col = relative_col + tile_start_col; - auto const absolute_row = relative_row + tile_start_row; - auto const row_batch_start = - tile.batch_number == 0 ? 0 : batch_row_boundaries[tile.batch_number]; - - auto const participation_mask = __ballot_sync(0xFFFFFFFF, absolute_row < num_rows); - - if (absolute_row < num_rows) { - auto const my_byte = input_data[row_offsets(absolute_row, row_batch_start) + validity_offset + - (absolute_col / cols_per_read)]; - - // so every thread that is participating in the warp has a byte, but it's row-based data and - // we need it in column-based. So we shuffle the bits around to make the bytes we actually - // write. - for (int i = 0, byte_mask = 0x1; (i < cols_per_read) && ((relative_col + i) < num_columns); - ++i, byte_mask <<= 1) { - auto const validity_data = __ballot_sync(participation_mask, my_byte & byte_mask); - // lead thread in each warp writes data - if (warp.thread_rank() == 0) { - auto const validity_write_offset = - validity_data_col_length * (relative_col + i) + relative_row / cols_per_read; - *reinterpret_cast(&shared[validity_write_offset]) = validity_data; - } - } - } - } - - // now memcpy the shared memory out to the final destination - auto const col_words = util::div_rounding_up_unsafe(num_tile_rows, CHAR_BIT * 4); - - // make sure entire tile has finished copy - group.sync(); - - for (int relative_col = warp.meta_group_rank(); relative_col < num_tile_cols; - relative_col += warp.meta_group_size()) { - auto const absolute_col = relative_col + tile_start_col; - auto dst = output_nm[absolute_col] + word_index(tile_start_row); - auto const src = - reinterpret_cast(&shared[validity_data_col_length * relative_col]); - -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::memcpy_async( - warp, dst, src, aligned_size_t<4>(validity_data_col_length), shared_tile_barrier); -#else - for (int b = warp.thread_rank(); b < col_words; b += warp.size()) { - dst[b] = src[b]; - } -#endif - } - -#ifdef ASYNC_MEMCPY_SUPPORTED - // wait for tile of data to arrive - shared_tile_barrier.arrive_and_wait(); -#else - group.sync(); -#endif // ASYNC_MEMCPY_SUPPORTED -} - -/** - * @brief copies string data from jcudf row format to cudf columns - * - * @tparam RowOffsetFunctor iterator for row offsets into the destination data - * @param row_offsets offsets for each row in input data - * @param string_row_offsets offset data into jcudf row data for each string - * @param string_lengths length of each incoming string in each column - * @param string_column_offsets offset column data for cudf column - * @param string_col_data output cudf string column data - * @param row_data jcudf row data - * @param num_rows number of rows in data - * @param num_string_columns number of string columns in the table - */ -template -__global__ void copy_strings_from_rows(RowOffsetFunctor row_offsets, - int32_t** string_row_offsets, - int32_t** string_lengths, - size_type** string_column_offsets, - char** string_col_data, - int8_t const* row_data, - size_type const num_rows, - size_type const num_string_columns) -{ - // Each warp takes a tile, which is a single column and up to ROWS_PER_BLOCK rows. A tile will not - // wrap around the bottom of the table. The warp will copy the strings for each row in the tile. - // Traversing in row-major order to coalesce the offsets and size reads. - auto my_block = cooperative_groups::this_thread_block(); - auto warp = cooperative_groups::tiled_partition(my_block); -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::barrier block_barrier; -#endif - - // workaround for not being able to take a reference to a constexpr host variable - auto const ROWS_PER_BLOCK = NUM_STRING_ROWS_PER_BLOCK_FROM_ROWS; - auto const tiles_per_col = util::div_rounding_up_unsafe(num_rows, ROWS_PER_BLOCK); - auto const starting_tile = blockIdx.x * warp.meta_group_size() + warp.meta_group_rank(); - auto const num_tiles = tiles_per_col * num_string_columns; - auto const tile_stride = warp.meta_group_size() * gridDim.x; - // Each warp will copy strings in its tile. This is handled by all the threads of a warp passing - // the same parameters to async_memcpy and all threads in the warp participating in the copy. - for (auto my_tile = starting_tile; my_tile < num_tiles; my_tile += tile_stride) { - auto const starting_row = (my_tile % tiles_per_col) * ROWS_PER_BLOCK; - auto const col = my_tile / tiles_per_col; - auto const str_len = string_lengths[col]; - auto const str_row_off = string_row_offsets[col]; - auto const str_col_off = string_column_offsets[col]; - auto str_col_data = string_col_data[col]; - for (int row = starting_row; row < starting_row + ROWS_PER_BLOCK && row < num_rows; ++row) { - auto const src = &row_data[row_offsets(row, 0) + str_row_off[row]]; - auto dst = &str_col_data[str_col_off[row]]; - -#ifdef ASYNC_MEMCPY_SUPPORTED - cuda::memcpy_async(warp, dst, src, str_len[row], block_barrier); -#else - for (int c = warp.thread_rank(); c < str_len[row]; c += warp.size()) { - dst[c] = src[c]; - } -#endif - } - } -} - -/** - * @brief Calculate the dimensions of the kernel for fixed width only columns. - * - * @param [in] num_columns the number of columns being copied. - * @param [in] num_rows the number of rows being copied. - * @param [in] size_per_row the size each row takes up when padded. - * @param [out] blocks the size of the blocks for the kernel - * @param [out] threads the size of the threads for the kernel - * @return the size in bytes of shared memory needed for each block. - */ -static int calc_fixed_width_kernel_dims(const size_type num_columns, - const size_type num_rows, - const size_type size_per_row, - dim3& blocks, - dim3& threads) -{ - // We have found speed degrades when a thread handles more than 4 columns. - // Each block is 2 dimensional. The y dimension indicates the columns. - // We limit this to 32 threads in the y dimension so we can still - // have at least 32 threads in the x dimension (1 warp) which should - // result in better coalescing of memory operations. We also - // want to guarantee that we are processing a multiple of 32 threads - // in the x dimension because we use atomic operations at the block - // level when writing validity data out to main memory, and that would - // need to change if we split a word of validity data between blocks. - int const y_block_size = min(util::div_rounding_up_safe(num_columns, 4), 32); - int const x_possible_block_size = 1024 / y_block_size; - // 48KB is the default setting for shared memory per block according to the cuda tutorials - // If someone configures the GPU to only have 16 KB this might not work. - int const max_shared_size = 48 * 1024; - // If we don't have enough shared memory there is no point in having more threads - // per block that will just sit idle - auto const max_block_size = std::min(x_possible_block_size, max_shared_size / size_per_row); - // Make sure that the x dimension is a multiple of 32 this not only helps - // coalesce memory access it also lets us do a ballot sync for validity to write - // the data back out the warp level. If x is a multiple of 32 then each thread in the y - // dimension is associated with one or more warps, that should correspond to the validity - // words directly. - int const block_size = (max_block_size / 32) * 32; - CUDF_EXPECTS(block_size != 0, "Row size is too large to fit in shared memory"); - - // The maximum number of blocks supported in the x dimension is 2 ^ 31 - 1 - // but in practice haveing too many can cause some overhead that I don't totally - // understand. Playing around with this haveing as little as 600 blocks appears - // to be able to saturate memory on V100, so this is an order of magnitude higher - // to try and future proof this a bit. - int const num_blocks = std::clamp((num_rows + block_size - 1) / block_size, 1, 10240); - - blocks.x = num_blocks; - blocks.y = 1; - blocks.z = 1; - threads.x = block_size; - threads.y = y_block_size; - threads.z = 1; - return size_per_row * block_size; -} - -/** - * When converting to rows it is possible that the size of the table was too big to fit - * in a single column. This creates an output column for a subset of the rows in a table - * going from start row and containing the next num_rows. Most of the parameters passed - * into this function are common between runs and should be calculated once. - */ -static std::unique_ptr fixed_width_convert_to_rows( - const size_type start_row, - const size_type num_rows, - const size_type num_columns, - const size_type size_per_row, - rmm::device_uvector& column_start, - rmm::device_uvector& column_size, - rmm::device_uvector& input_data, - rmm::device_uvector& input_nm, - const scalar& zero, - const scalar& scalar_size_per_row, - rmm::cuda_stream_view stream, - rmm::mr::device_memory_resource* mr) -{ - int64_t const total_allocation = size_per_row * num_rows; - // We made a mistake in the split somehow - CUDF_EXPECTS(total_allocation < std::numeric_limits::max(), - "Table is too large to fit!"); - - // Allocate and set the offsets row for the byte array - std::unique_ptr offsets = - cudf::detail::sequence(num_rows + 1, zero, scalar_size_per_row, stream, mr); - - std::unique_ptr data = make_numeric_column(data_type(type_id::INT8), - static_cast(total_allocation), - mask_state::UNALLOCATED, - stream, - mr); - - dim3 blocks; - dim3 threads; - int shared_size = - detail::calc_fixed_width_kernel_dims(num_columns, num_rows, size_per_row, blocks, threads); - - copy_to_rows_fixed_width_optimized<<>>( - start_row, - num_rows, - num_columns, - size_per_row, - column_start.data(), - column_size.data(), - input_data.data(), - input_nm.data(), - data->mutable_view().data()); - - return make_lists_column(num_rows, - std::move(offsets), - std::move(data), - 0, - rmm::device_buffer{0, cudf::get_default_stream(), mr}, - stream, - mr); -} - -static inline bool are_all_fixed_width(std::vector const& schema) -{ - return std::all_of( - schema.begin(), schema.end(), [](const data_type& t) { return is_fixed_width(t); }); -} - -/** - * @brief Given a set of fixed width columns, calculate how the data will be laid out in memory. - * - * @param [in] schema the types of columns that need to be laid out. - * @param [out] column_start the byte offset where each column starts in the row. - * @param [out] column_size the size in bytes of the data for each columns in the row. - * @return the size in bytes each row needs. - */ -static inline int32_t compute_fixed_width_layout(std::vector const& schema, - std::vector& column_start, - std::vector& column_size) -{ - // We guarantee that the start of each column is 64-bit aligned so anything can go - // there, but to make the code simple we will still do an alignment for it. - int32_t at_offset = 0; - for (auto col = schema.begin(); col < schema.end(); col++) { - size_type s = size_of(*col); - column_size.emplace_back(s); - std::size_t allocation_needed = s; - std::size_t alignment_needed = allocation_needed; // They are the same for fixed width types - at_offset = util::round_up_unsafe(at_offset, static_cast(alignment_needed)); - column_start.emplace_back(at_offset); - at_offset += allocation_needed; - } - - // Now we need to add in space for validity - // Eventually we can think about nullable vs not nullable, but for now we will just always add - // it in - int32_t const validity_bytes_needed = - util::div_rounding_up_safe(schema.size(), CHAR_BIT); - // validity comes at the end and is byte aligned so we can pack more in. - at_offset += validity_bytes_needed; - // Now we need to pad the end so all rows are 64 bit aligned - return util::round_up_unsafe(at_offset, JCUDF_ROW_ALIGNMENT); -} - -/** - * @brief column sizes and column start offsets for a table - */ -struct column_info_s { - size_type size_per_row; - std::vector column_starts; - std::vector column_sizes; - std::vector variable_width_column_starts; - - column_info_s& operator=(column_info_s const& other) = delete; - column_info_s& operator=(column_info_s&& other) = delete; -}; - -/** - * @brief Compute information about a table such as bytes per row and offsets. - * - * @tparam iterator iterator of column schema data - * @param begin starting iterator of column schema - * @param end ending iterator of column schema - * @param column_starts column start offsets - * @param column_sizes size in bytes of each column - * @return size of the fixed_width data portion of a row. - */ -template -column_info_s compute_column_information(iterator begin, iterator end) -{ - size_type size_per_row = 0; - std::vector column_starts; - std::vector column_sizes; - std::vector variable_width_column_starts; - - column_starts.reserve(std::distance(begin, end) + 1); - column_sizes.reserve(std::distance(begin, end)); - - for (auto col_type = begin; col_type != end; ++col_type) { - bool const compound_type = is_compound(*col_type); - - // a list or string column will write a single uint64 of data here for offset/length - auto const col_size = compound_type ? sizeof(uint32_t) + sizeof(uint32_t) : size_of(*col_type); - - // align size for this type - They are the same for fixed width types and 4 bytes for variable - // width length/offset combos - size_type const alignment_needed = compound_type ? __alignof(uint32_t) : col_size; - size_per_row = util::round_up_unsafe(size_per_row, alignment_needed); - if (compound_type) { variable_width_column_starts.push_back(size_per_row); } - column_starts.push_back(size_per_row); - column_sizes.push_back(col_size); - size_per_row += col_size; - } - - // add validity offset to the end of fixed_width offsets - auto validity_offset = size_per_row; - column_starts.push_back(validity_offset); - - // validity is byte-aligned in the JCUDF format - size_per_row += - util::div_rounding_up_safe(static_cast(std::distance(begin, end)), CHAR_BIT); - - return {size_per_row, - std::move(column_starts), - std::move(column_sizes), - std::move(variable_width_column_starts)}; -} - -/** - * @brief Build `tile_info` for the validity data to break up the work. - * - * @param num_columns number of columns in the table - * @param num_rows number of rows in the table - * @param shmem_limit_per_tile size of shared memory available to a single gpu tile - * @param row_batches batched row information for multiple output locations - * @return vector of `tile_info` structs for validity data - */ -std::vector build_validity_tile_infos(size_type const& num_columns, - size_type const& num_rows, - size_type const& shmem_limit_per_tile, - std::vector const& row_batches) -{ - auto const desired_rows_and_columns = static_cast(sqrt(shmem_limit_per_tile)); - auto const column_stride = util::round_up_unsafe( - [&]() { - if (desired_rows_and_columns > num_columns) { - // not many columns, build a single tile for table width and ship it off - return num_columns; - } else { - return util::round_down_safe(desired_rows_and_columns, CHAR_BIT); - } - }(), - JCUDF_ROW_ALIGNMENT); - - // we fit as much as we can given the column stride note that an element in the table takes just 1 - // bit, but a row with a single element still takes 8 bytes! - auto const bytes_per_row = - util::round_up_safe(util::div_rounding_up_unsafe(column_stride, CHAR_BIT), JCUDF_ROW_ALIGNMENT); - auto const row_stride = - std::min(num_rows, util::round_down_safe(shmem_limit_per_tile / bytes_per_row, 64)); - std::vector validity_tile_infos; - validity_tile_infos.reserve(num_columns / column_stride * num_rows / row_stride); - for (int col = 0; col < num_columns; col += column_stride) { - int current_tile_row_batch = 0; - int rows_left_in_batch = row_batches[current_tile_row_batch].row_count; - int row = 0; - while (row < num_rows) { - if (rows_left_in_batch == 0) { - current_tile_row_batch++; - rows_left_in_batch = row_batches[current_tile_row_batch].row_count; - } - int const tile_height = std::min(row_stride, rows_left_in_batch); - validity_tile_infos.emplace_back( - detail::tile_info{col, - row, - std::min(col + column_stride - 1, num_columns - 1), - row + tile_height - 1, - current_tile_row_batch}); - row += tile_height; - rows_left_in_batch -= tile_height; - } - } - - return validity_tile_infos; -} - -/** - * @brief functor that returns the size of a row or 0 is row is greater than the number of rows in - * the table - * - * @tparam RowSize iterator that returns the size of a specific row - */ -template -struct row_size_functor { - row_size_functor(size_type row_end, RowSize row_sizes, size_type last_row_end) - : _row_end(row_end), _row_sizes(row_sizes), _last_row_end(last_row_end) - { - } - - __device__ inline uint64_t operator()(int i) const - { - return i >= _row_end ? 0 : _row_sizes[i + _last_row_end]; - } - - size_type _row_end; - RowSize _row_sizes; - size_type _last_row_end; -}; - -/** - * @brief Builds batches of rows that will fit in the size limit of a column. - * - * @tparam RowSize iterator that gives the size of a specific row of the table. - * @param num_rows Total number of rows in the table - * @param row_sizes iterator that gives the size of a specific row of the table. - * @param all_fixed_width bool indicating all data in this table is fixed width - * @param stream stream to operate on for this work - * @param mr memory resource used to allocate any returned data - * @returns vector of size_type's that indicate row numbers for batch boundaries and a - * device_uvector of row offsets - */ -template -batch_data build_batches(size_type num_rows, - RowSize row_sizes, - bool all_fixed_width, - rmm::cuda_stream_view stream, - rmm::mr::device_memory_resource* mr) -{ - auto const total_size = thrust::reduce(rmm::exec_policy(stream), row_sizes, row_sizes + num_rows); - auto const num_batches = static_cast( - util::div_rounding_up_safe(total_size, static_cast(MAX_BATCH_SIZE))); - auto const num_offsets = num_batches + 1; - std::vector row_batches; - std::vector batch_row_boundaries; - device_uvector batch_row_offsets(all_fixed_width ? 0 : num_rows, stream); - - // at most max gpu memory / 2GB iterations. - batch_row_boundaries.reserve(num_offsets); - batch_row_boundaries.push_back(0); - size_type last_row_end = 0; - device_uvector cumulative_row_sizes(num_rows, stream); - - // Evaluate the row size values before calling `inclusive_scan` to workaround - // memory issue in https://github.com/NVIDIA/spark-rapids-jni/issues/1567. - thrust::copy( - rmm::exec_policy(stream), row_sizes, row_sizes + num_rows, cumulative_row_sizes.begin()); - thrust::inclusive_scan(rmm::exec_policy(stream), - cumulative_row_sizes.begin(), - cumulative_row_sizes.end(), - cumulative_row_sizes.begin()); - - // This needs to be split this into 2 gig batches. Care must be taken to avoid a batch larger than - // 2 gigs. Imagine a table with 900 meg rows. The batches should occur every 2 rows, but if a - // lower bound is run at 2 gigs, 4 gigs, 6 gigs. the batches will be 2 rows, 2 rows, 3 rows, which - // will be invalid. The previous batch size must be taken into account when building a new batch. - // One way is to pull the batch size back to the host and add it to MAX_BATCH_SIZE for the lower - // bound search. The other method involves keeping everything on device, but subtracting the - // previous batch from cumulative_row_sizes based on index. This involves no synchronization - // between GPU and CPU, but involves more work on the GPU. These further need to be broken on a - // 32-row boundary to match the fixed_width optimized versions. - - while (last_row_end < num_rows) { - auto offset_row_sizes = thrust::make_transform_iterator( - cumulative_row_sizes.begin(), - [last_row_end, cumulative_row_sizes = cumulative_row_sizes.data()] __device__(auto i) { - return i - cumulative_row_sizes[last_row_end]; - }); - auto search_start = offset_row_sizes + last_row_end; - auto search_end = offset_row_sizes + num_rows; - - // find the next MAX_BATCH_SIZE boundary - auto const lb = - thrust::lower_bound(rmm::exec_policy(stream), search_start, search_end, MAX_BATCH_SIZE); - size_type const batch_size = lb - search_start; - - size_type const row_end = lb == search_end - ? batch_size + last_row_end - : last_row_end + util::round_down_safe(batch_size, 32); - - // build offset list for each row in this batch - auto const num_rows_in_batch = row_end - last_row_end; - - // build offset list for each row in this batch - auto const num_entries = row_end - last_row_end + 1; - device_uvector output_batch_row_offsets(num_entries, stream, mr); - - auto row_size_iter_bounded = cudf::detail::make_counting_transform_iterator( - 0, row_size_functor(row_end, row_sizes, last_row_end)); - - thrust::exclusive_scan(rmm::exec_policy(stream), - row_size_iter_bounded, - row_size_iter_bounded + num_entries, - output_batch_row_offsets.begin()); - - auto const batch_bytes = output_batch_row_offsets.element(num_rows_in_batch, stream); - - // The output_batch_row_offsets vector is used as the offset column of the returned data. This - // needs to be individually allocated, but the kernel needs a contiguous array of offsets or - // more global lookups are necessary. - if (!all_fixed_width) { - cudaMemcpy(batch_row_offsets.data() + last_row_end, - output_batch_row_offsets.data(), - num_rows_in_batch * sizeof(size_type), - cudaMemcpyDeviceToDevice); - } - - batch_row_boundaries.push_back(row_end); - row_batches.push_back({batch_bytes, num_rows_in_batch, std::move(output_batch_row_offsets)}); - - last_row_end = row_end; - } - - return { - std::move(batch_row_offsets), - make_device_uvector_async(batch_row_boundaries, stream, rmm::mr::get_current_device_resource()), - std::move(batch_row_boundaries), - std::move(row_batches)}; -} - -/** - * @brief Computes the number of tiles necessary given a tile height and batch offsets - * - * @param batch_row_boundaries row boundaries for each batch - * @param desired_tile_height height of each tile in the table - * @param stream stream to use - * @return number of tiles necessary - */ -int compute_tile_counts(device_span const& batch_row_boundaries, - int desired_tile_height, - rmm::cuda_stream_view stream) -{ - size_type const num_batches = batch_row_boundaries.size() - 1; - device_uvector num_tiles(num_batches, stream); - auto iter = thrust::make_counting_iterator(0); - thrust::transform( - rmm::exec_policy(stream), - iter, - iter + num_batches, - num_tiles.begin(), - [desired_tile_height, - batch_row_boundaries = batch_row_boundaries.data()] __device__(auto batch_index) -> size_type { - return util::div_rounding_up_unsafe( - batch_row_boundaries[batch_index + 1] - batch_row_boundaries[batch_index], - desired_tile_height); - }); - return thrust::reduce(rmm::exec_policy(stream), num_tiles.begin(), num_tiles.end()); -} - -/** - * @brief Builds the `tile_info` structs for a given table. - * - * @param tiles span of tiles to populate - * @param batch_row_boundaries boundary to row batches - * @param column_start starting column of the tile - * @param column_end ending column of the tile - * @param desired_tile_height height of the tile - * @param total_number_of_rows total number of rows in the table - * @param stream stream to use - * @return number of tiles created - */ -size_type build_tiles( - device_span tiles, - device_uvector const& batch_row_boundaries, // comes from build_batches - int column_start, - int column_end, - int desired_tile_height, - int total_number_of_rows, - rmm::cuda_stream_view stream) -{ - size_type const num_batches = batch_row_boundaries.size() - 1; - device_uvector num_tiles(num_batches, stream); - auto iter = thrust::make_counting_iterator(0); - thrust::transform( - rmm::exec_policy(stream), - iter, - iter + num_batches, - num_tiles.begin(), - [desired_tile_height, - batch_row_boundaries = batch_row_boundaries.data()] __device__(auto batch_index) -> size_type { - return util::div_rounding_up_unsafe( - batch_row_boundaries[batch_index + 1] - batch_row_boundaries[batch_index], - desired_tile_height); - }); - - size_type const total_tiles = - thrust::reduce(rmm::exec_policy(stream), num_tiles.begin(), num_tiles.end()); - - device_uvector tile_starts(num_batches + 1, stream); - auto tile_iter = cudf::detail::make_counting_transform_iterator( - 0, [num_tiles = num_tiles.data(), num_batches] __device__(auto i) { - return (i < num_batches) ? num_tiles[i] : 0; - }); - thrust::exclusive_scan(rmm::exec_policy(stream), - tile_iter, - tile_iter + num_batches + 1, - tile_starts.begin()); // in tiles - - thrust::transform( - rmm::exec_policy(stream), - iter, - iter + total_tiles, - tiles.begin(), - [ =, - tile_starts = tile_starts.data(), - batch_row_boundaries = batch_row_boundaries.data()] __device__(size_type tile_index) { - // what batch this tile falls in - auto const batch_index_iter = - thrust::upper_bound(thrust::seq, tile_starts, tile_starts + num_batches, tile_index); - auto const batch_index = std::distance(tile_starts, batch_index_iter) - 1; - // local index within the tile - int const local_tile_index = tile_index - tile_starts[batch_index]; - // the start row for this batch. - int const batch_row_start = batch_row_boundaries[batch_index]; - // the start row for this tile - int const tile_row_start = batch_row_start + (local_tile_index * desired_tile_height); - // the end row for this tile - int const max_row = std::min(total_number_of_rows - 1, - batch_index + 1 > num_batches - ? std::numeric_limits::max() - : static_cast(batch_row_boundaries[batch_index + 1]) - 1); - int const tile_row_end = - std::min(batch_row_start + ((local_tile_index + 1) * desired_tile_height) - 1, max_row); - - // stuff the tile - return tile_info{ - column_start, tile_row_start, column_end, tile_row_end, static_cast(batch_index)}; - }); - - return total_tiles; -} - -/** - * @brief Determines what data should be operated on by each tile for the incoming table. - * - * @tparam TileCallback Callback that receives the start and end columns of tiles - * @param column_sizes vector of the size of each column - * @param column_starts vector of the offset of each column - * @param first_row_batch_size size of the first row batch to limit max tile size since a tile - * is unable to span batches - * @param total_number_of_rows total number of rows in the table - * @param shmem_limit_per_tile shared memory allowed per tile - * @param f callback function called when building a tile - */ -template -void determine_tiles(std::vector const& column_sizes, - std::vector const& column_starts, - size_type const first_row_batch_size, - size_type const total_number_of_rows, - size_type const& shmem_limit_per_tile, - TileCallback f) -{ - // tile infos are organized with the tile going "down" the columns this provides the most - // coalescing of memory access - int current_tile_width = 0; - int current_tile_start_col = 0; - - // the ideal tile height has lots of 8-byte reads and 8-byte writes. The optimal read/write would - // be memory cache line sized access, but since other tiles will read/write the edges this may not - // turn out to be overly important. For now, we will attempt to build a square tile as far as byte - // sizes. x * y = shared_mem_size. Which translates to x^2 = shared_mem_size since we want them - // equal, so height and width are sqrt(shared_mem_size). The trick is that it's in bytes, not rows - // or columns. - auto const square_bias = 32; // bias towards columns for performance reasons - auto const optimal_square_len = static_cast(sqrt(shmem_limit_per_tile)); - auto const desired_tile_height = util::round_up_safe( - std::min(optimal_square_len / square_bias, total_number_of_rows), cudf::detail::warp_size); - auto const tile_height = std::clamp(desired_tile_height, 1, first_row_batch_size); - - int row_size = 0; - - // march each column and build the tiles of appropriate sizes - for (uint col = 0; col < column_sizes.size(); ++col) { - auto const col_size = column_sizes[col]; - - // align size for this type - auto const alignment_needed = col_size; // They are the same for fixed width types - auto const row_size_aligned = util::round_up_unsafe(row_size, alignment_needed); - auto const row_size_with_this_col = row_size_aligned + col_size; - auto const row_size_with_end_pad = - util::round_up_unsafe(row_size_with_this_col, JCUDF_ROW_ALIGNMENT); - - if (row_size_with_end_pad * tile_height > shmem_limit_per_tile) { - // too large, close this tile, generate vertical tiles and restart - f(current_tile_start_col, col == 0 ? col : col - 1, tile_height); - - row_size = - util::round_up_unsafe((column_starts[col] + column_sizes[col]) & 7, alignment_needed); - row_size += col_size; // alignment required for shared memory tile boundary to match - // alignment of output row - current_tile_start_col = col; - current_tile_width = 0; - } else { - row_size = row_size_with_this_col; - current_tile_width++; - } - } - - // build last set of tiles - if (current_tile_width > 0) { - f(current_tile_start_col, static_cast(column_sizes.size()) - 1, tile_height); - } -} - -/** - * @brief convert cudf table into JCUDF row format - * - * @tparam offsetFunctor functor type for offset functor - * @param tbl table to convert to JCUDF row format - * @param batch_info information about the batches of data - * @param offset_functor functor that returns the starting offset of each row - * @param column_info information about incoming columns - * @param variable_width_offsets optional vector of offsets for variable-with columns - * @param stream stream used - * @param mr selected memory resource for returned data - * @return vector of list columns containing byte columns of the JCUDF row data - */ -template -std::vector> convert_to_rows( - table_view const& tbl, - batch_data& batch_info, - offsetFunctor offset_functor, - column_info_s const& column_info, - std::optional> variable_width_offsets, - rmm::cuda_stream_view stream, - rmm::mr::device_memory_resource* mr) -{ - int device_id; - CUDF_CUDA_TRY(cudaGetDevice(&device_id)); - int total_shmem_in_bytes; - CUDF_CUDA_TRY( - cudaDeviceGetAttribute(&total_shmem_in_bytes, cudaDevAttrMaxSharedMemoryPerBlock, device_id)); - -#ifndef __CUDA_ARCH__ // __host__ code. - // Need to reduce total shmem available by the size of barriers in the kernel's shared memory - total_shmem_in_bytes -= - util::round_up_unsafe(sizeof(cuda::barrier), 16ul); -#endif // __CUDA_ARCH__ - - auto const shmem_limit_per_tile = total_shmem_in_bytes; - - auto const num_rows = tbl.num_rows(); - auto const fixed_width_only = !variable_width_offsets.has_value(); - - auto select_columns = [](auto const& tbl, auto column_predicate) { - std::vector cols; - std::copy_if(tbl.begin(), tbl.end(), std::back_inserter(cols), [&](auto c) { - return column_predicate(c); - }); - return table_view(cols); - }; - - auto dev_col_sizes = make_device_uvector_async( - column_info.column_sizes, stream, rmm::mr::get_current_device_resource()); - auto dev_col_starts = make_device_uvector_async( - column_info.column_starts, stream, rmm::mr::get_current_device_resource()); - - // Get the pointers to the input columnar data ready - auto const data_begin = thrust::make_transform_iterator(tbl.begin(), [](auto const& c) { - return is_compound(c.type()) ? nullptr : c.template data(); - }); - std::vector input_data(data_begin, data_begin + tbl.num_columns()); - - // validity code handles variable and fixed-width data, so give it everything - auto const nm_begin = - thrust::make_transform_iterator(tbl.begin(), [](auto const& c) { return c.null_mask(); }); - std::vector input_nm(nm_begin, nm_begin + tbl.num_columns()); - - auto dev_input_data = - make_device_uvector_async(input_data, stream, rmm::mr::get_current_device_resource()); - auto dev_input_nm = - make_device_uvector_async(input_nm, stream, rmm::mr::get_current_device_resource()); - - // the first batch always exists unless we were sent an empty table - auto const first_batch_size = batch_info.row_batches[0].row_count; - - std::vector output_buffers; - std::vector output_data; - output_data.reserve(batch_info.row_batches.size()); - output_buffers.reserve(batch_info.row_batches.size()); - std::transform( - batch_info.row_batches.begin(), - batch_info.row_batches.end(), - std::back_inserter(output_buffers), - [&](auto const& batch) { return rmm::device_buffer(batch.num_bytes, stream, mr); }); - std::transform( - output_buffers.begin(), output_buffers.end(), std::back_inserter(output_data), [](auto& buf) { - return static_cast(buf.data()); - }); - - auto dev_output_data = make_device_uvector_async(output_data, stream, mr); - - int info_count = 0; - detail::determine_tiles( - column_info.column_sizes, - column_info.column_starts, - first_batch_size, - num_rows, - shmem_limit_per_tile, - [&gpu_batch_row_boundaries = batch_info.d_batch_row_boundaries, &info_count, &stream]( - int const start_col, int const end_col, int const tile_height) { - int i = detail::compute_tile_counts(gpu_batch_row_boundaries, tile_height, stream); - info_count += i; - }); - - // allocate space for tiles - device_uvector gpu_tile_infos(info_count, stream); - int tile_offset = 0; - - detail::determine_tiles( - column_info.column_sizes, - column_info.column_starts, - first_batch_size, - num_rows, - shmem_limit_per_tile, - [&gpu_batch_row_boundaries = batch_info.d_batch_row_boundaries, - &gpu_tile_infos, - num_rows, - &tile_offset, - stream](int const start_col, int const end_col, int const tile_height) { - tile_offset += detail::build_tiles( - {gpu_tile_infos.data() + tile_offset, gpu_tile_infos.size() - tile_offset}, - gpu_batch_row_boundaries, - start_col, - end_col, - tile_height, - num_rows, - stream); - }); - - // build validity tiles for ALL columns, variable and fixed width. - auto validity_tile_infos = detail::build_validity_tile_infos( - tbl.num_columns(), num_rows, shmem_limit_per_tile, batch_info.row_batches); - - auto dev_validity_tile_infos = - make_device_uvector_async(validity_tile_infos, stream, rmm::mr::get_current_device_resource()); - - auto const validity_offset = column_info.column_starts.back(); - - // blast through the entire table and convert it - detail::copy_to_rows<<>>(num_rows, - tbl.num_columns(), - shmem_limit_per_tile, - gpu_tile_infos, - dev_input_data.data(), - dev_col_sizes.data(), - dev_col_starts.data(), - offset_functor, - batch_info.d_batch_row_boundaries.data(), - reinterpret_cast(dev_output_data.data())); - - // note that validity gets the entire table and not the fixed-width portion - detail::copy_validity_to_rows<<>>(num_rows, - tbl.num_columns(), - shmem_limit_per_tile, - offset_functor, - batch_info.d_batch_row_boundaries.data(), - dev_output_data.data(), - validity_offset, - dev_validity_tile_infos, - dev_input_nm.data()); - - if (!fixed_width_only) { - // build table view for variable-width data only - auto const variable_width_table = - select_columns(tbl, [](auto col) { return is_compound(col.type()); }); - - CUDF_EXPECTS(!variable_width_table.is_empty(), "No variable-width columns when expected!"); - CUDF_EXPECTS(variable_width_offsets.has_value(), "No variable width offset data!"); - - auto const variable_data_begin = - thrust::make_transform_iterator(variable_width_table.begin(), [](auto const& c) { - strings_column_view const scv{c}; - return is_compound(c.type()) ? scv.chars().template data() : nullptr; - }); - std::vector variable_width_input_data( - variable_data_begin, variable_data_begin + variable_width_table.num_columns()); - - auto dev_variable_input_data = make_device_uvector_async( - variable_width_input_data, stream, rmm::mr::get_current_device_resource()); - auto dev_variable_col_output_offsets = make_device_uvector_async( - column_info.variable_width_column_starts, stream, rmm::mr::get_current_device_resource()); - - for (uint i = 0; i < batch_info.row_batches.size(); i++) { - auto const batch_row_offset = batch_info.batch_row_boundaries[i]; - auto const batch_num_rows = batch_info.row_batches[i].row_count; - - dim3 const string_blocks( - std::min(MAX_STRING_BLOCKS, - util::div_rounding_up_unsafe(batch_num_rows, NUM_STRING_ROWS_PER_BLOCK_TO_ROWS))); - - detail::copy_strings_to_rows<<>>(batch_num_rows, - variable_width_table.num_columns(), - dev_variable_input_data.data(), - dev_variable_col_output_offsets.data(), - variable_width_offsets->data(), - column_info.size_per_row, - offset_functor, - batch_row_offset, - reinterpret_cast(output_data[i])); - } - } - - // split up the output buffer into multiple buffers based on row batch sizes and create list of - // byte columns - std::vector> ret; - ret.reserve(batch_info.row_batches.size()); - auto counting_iter = thrust::make_counting_iterator(0); - std::transform(counting_iter, - counting_iter + batch_info.row_batches.size(), - std::back_inserter(ret), - [&](auto batch) { - auto const offset_count = batch_info.row_batches[batch].row_offsets.size(); - auto offsets = - std::make_unique(data_type{type_id::INT32}, - (size_type)offset_count, - batch_info.row_batches[batch].row_offsets.release(), - rmm::device_buffer{}, - 0); - auto data = std::make_unique(data_type{type_id::INT8}, - batch_info.row_batches[batch].num_bytes, - std::move(output_buffers[batch]), - rmm::device_buffer{}, - 0); - - return make_lists_column(batch_info.row_batches[batch].row_count, - std::move(offsets), - std::move(data), - 0, - rmm::device_buffer{0, cudf::get_default_stream(), mr}, - stream, - mr); - }); - - return ret; -} - -} // namespace detail - -/** - * @brief convert a cudf table to JCUDF row format - * - * @param tbl incoming table to convert - * @param stream stream to use for operations - * @param mr memory resource used for returned data - * @return vector of list columns containing byte columns of the JCUDF row data - */ -std::vector> convert_to_rows(table_view const& tbl, - rmm::cuda_stream_view stream, - rmm::mr::device_memory_resource* mr) -{ - auto const num_columns = tbl.num_columns(); - auto const num_rows = tbl.num_rows(); - - auto const fixed_width_only = std::all_of( - tbl.begin(), tbl.end(), [](column_view const& c) { return is_fixed_width(c.type()); }); - - // Break up the work into tiles, which are a starting and ending row/col #. This tile size is - // calculated based on the shared memory size available we want a single tile to fill up the - // entire shared memory space available for the transpose-like conversion. - - // There are two different processes going on here. The GPU conversion of the data and the writing - // of the data into the list of byte columns that are a maximum of 2 gigs each due to offset - // maximum size. The GPU conversion portion has to understand this limitation because the column - // must own the data inside and as a result it must be a distinct allocation for that column. - // Copying the data into these final buffers would be prohibitively expensive, so care is taken to - // ensure the GPU writes to the proper buffer. The tiles are broken at the boundaries of specific - // rows based on the row sizes up to that point. These are row batches and they are decided first - // before building the tiles so the tiles can be properly cut around them. - - auto schema_column_iter = - thrust::make_transform_iterator(tbl.begin(), [](auto const& i) { return i.type(); }); - - auto column_info = - detail::compute_column_information(schema_column_iter, schema_column_iter + num_columns); - auto const size_per_row = column_info.size_per_row; - if (fixed_width_only) { - // total encoded row size. This includes fixed-width data and validity only. It does not include - // variable-width data since it isn't copied with the fixed-width and validity kernel. - auto row_size_iter = thrust::make_constant_iterator( - util::round_up_unsafe(size_per_row, JCUDF_ROW_ALIGNMENT)); - - auto batch_info = detail::build_batches(num_rows, row_size_iter, fixed_width_only, stream, mr); - - detail::fixed_width_row_offset_functor offset_functor( - util::round_up_unsafe(size_per_row, JCUDF_ROW_ALIGNMENT)); - - return detail::convert_to_rows( - tbl, batch_info, offset_functor, std::move(column_info), std::nullopt, stream, mr); - } else { - auto offset_data = detail::build_string_row_offsets(tbl, size_per_row, stream); - auto& row_sizes = std::get<0>(offset_data); - - auto row_size_iter = cudf::detail::make_counting_transform_iterator( - 0, detail::row_size_functor(num_rows, row_sizes.data(), 0)); - - auto batch_info = detail::build_batches(num_rows, row_size_iter, fixed_width_only, stream, mr); - - detail::string_row_offset_functor offset_functor(batch_info.batch_row_offsets); - - return detail::convert_to_rows(tbl, - batch_info, - offset_functor, - std::move(column_info), - std::make_optional(std::move(std::get<1>(offset_data))), - stream, - mr); - } -} - -std::vector> convert_to_rows_fixed_width_optimized( - table_view const& tbl, rmm::cuda_stream_view stream, rmm::mr::device_memory_resource* mr) -{ - auto const num_columns = tbl.num_columns(); - - std::vector schema; - schema.resize(num_columns); - std::transform( - tbl.begin(), tbl.end(), schema.begin(), [](auto i) -> data_type { return i.type(); }); - - if (detail::are_all_fixed_width(schema)) { - std::vector column_start; - std::vector column_size; - - int32_t const size_per_row = - detail::compute_fixed_width_layout(schema, column_start, column_size); - auto dev_column_start = make_device_uvector_async(column_start, stream, mr); - auto dev_column_size = make_device_uvector_async(column_size, stream, mr); - - // Make the number of rows per batch a multiple of 32 so we don't have to worry about splitting - // validity at a specific row offset. This might change in the future. - auto const max_rows_per_batch = - util::round_down_safe(std::numeric_limits::max() / size_per_row, 32); - - auto const num_rows = tbl.num_rows(); - - // Get the pointers to the input columnar data ready - std::vector input_data; - std::vector input_nm; - for (size_type column_number = 0; column_number < num_columns; column_number++) { - column_view cv = tbl.column(column_number); - input_data.emplace_back(cv.data()); - input_nm.emplace_back(cv.null_mask()); - } - auto dev_input_data = make_device_uvector_async(input_data, stream, mr); - auto dev_input_nm = make_device_uvector_async(input_nm, stream, mr); - - using ScalarType = scalar_type_t; - auto zero = make_numeric_scalar(data_type(type_id::INT32), stream.value()); - zero->set_valid_async(true, stream); - static_cast(zero.get())->set_value(0, stream); - - auto step = make_numeric_scalar(data_type(type_id::INT32), stream.value()); - step->set_valid_async(true, stream); - static_cast(step.get())->set_value(static_cast(size_per_row), stream); - - std::vector> ret; - for (size_type row_start = 0; row_start < num_rows; row_start += max_rows_per_batch) { - size_type row_count = num_rows - row_start; - row_count = row_count > max_rows_per_batch ? max_rows_per_batch : row_count; - ret.emplace_back(detail::fixed_width_convert_to_rows(row_start, - row_count, - num_columns, - size_per_row, - dev_column_start, - dev_column_size, - dev_input_data, - dev_input_nm, - *zero, - *step, - stream, - mr)); - } - - return ret; - } else { - CUDF_FAIL("Only fixed width types are currently supported"); - } -} - -namespace { - -/// @brief Calculates and sets null counts for specified columns -void fixup_null_counts(std::vector>& output_columns, - rmm::cuda_stream_view stream) -{ - for (auto& col : output_columns) { - col->set_null_count(cudf::detail::null_count(col->view().null_mask(), 0, col->size(), stream)); - } -} - -} // namespace - -/** - * @brief convert from JCUDF row format to cudf columns - * - * @param input vector of list columns containing byte columns of the JCUDF row data - * @param schema incoming schema of the data - * @param stream stream to use for compute - * @param mr memory resource for returned data - * @return cudf table of the data - */ -std::unique_ptr convert_from_rows(lists_column_view const& input, - std::vector const& schema, - rmm::cuda_stream_view stream, - rmm::mr::device_memory_resource* mr) -{ - // verify that the types are what we expect - column_view child = input.child(); - auto const list_type = child.type().id(); - CUDF_EXPECTS(list_type == type_id::INT8 || list_type == type_id::UINT8, - "Only a list of bytes is supported as input"); - - // convert any strings in the schema to two int32 columns - // This allows us to leverage the fixed-width copy code to fill in our offset and string length - // data. - std::vector string_schema; - string_schema.reserve(schema.size()); - for (auto i : schema) { - if (i.id() == type_id::STRING) { - string_schema.push_back(data_type(type_id::INT32)); - string_schema.push_back(data_type(type_id::INT32)); - } else { - string_schema.push_back(i); - } - } - - auto const num_columns = string_schema.size(); - auto const num_rows = input.parent().size(); - - int device_id; - CUDF_CUDA_TRY(cudaGetDevice(&device_id)); - int total_shmem_in_bytes; - CUDF_CUDA_TRY( - cudaDeviceGetAttribute(&total_shmem_in_bytes, cudaDevAttrMaxSharedMemoryPerBlock, device_id)); - -#ifndef __CUDA_ARCH__ // __host__ code. - // Need to reduce total shmem available by the size of barriers in the kernel's shared memory - total_shmem_in_bytes -= - util::round_up_unsafe(sizeof(cuda::barrier), 16ul); -#endif // __CUDA_ARCH__ - - auto const shmem_limit_per_tile = total_shmem_in_bytes; - - auto column_info = detail::compute_column_information(string_schema.begin(), string_schema.end()); - auto const size_per_row = util::round_up_unsafe(column_info.size_per_row, JCUDF_ROW_ALIGNMENT); - - // Ideally we would check that the offsets are all the same, etc. but for now this is probably - // fine - CUDF_EXPECTS(size_per_row * num_rows <= child.size(), "The layout of the data appears to be off"); - auto dev_col_starts = make_device_uvector_async( - column_info.column_starts, stream, rmm::mr::get_current_device_resource()); - auto dev_col_sizes = make_device_uvector_async( - column_info.column_sizes, stream, rmm::mr::get_current_device_resource()); - - // Allocate the columns we are going to write into - std::vector> output_columns; - std::vector> string_row_offset_columns; - std::vector> string_length_columns; - std::vector output_data; - std::vector output_nm; - std::vector string_row_offsets; - std::vector string_lengths; - for (auto i : schema) { - auto make_col = [&output_data, &output_nm](data_type type, - size_type num_rows, - bool include_nm, - rmm::cuda_stream_view stream, - rmm::mr::device_memory_resource* mr) { - auto column = - make_fixed_width_column(type, - num_rows, - include_nm ? mask_state::UNINITIALIZED : mask_state::UNALLOCATED, - stream, - mr); - auto mut = column->mutable_view(); - output_data.emplace_back(mut.data()); - if (include_nm) { output_nm.emplace_back(mut.null_mask()); } - return column; - }; - if (i.id() == type_id::STRING) { - auto const int32type = data_type(type_id::INT32); - auto offset_col = - make_col(int32type, num_rows, true, stream, rmm::mr::get_current_device_resource()); - string_row_offsets.push_back(offset_col->mutable_view().data()); - string_row_offset_columns.emplace_back(std::move(offset_col)); - auto length_col = - make_col(int32type, num_rows, false, stream, rmm::mr::get_current_device_resource()); - string_lengths.push_back(length_col->mutable_view().data()); - string_length_columns.emplace_back(std::move(length_col)); - // placeholder - output_columns.emplace_back(make_empty_column(type_id::STRING)); - } else { - output_columns.emplace_back(make_col(i, num_rows, true, stream, mr)); - } - } - - auto dev_string_row_offsets = - make_device_uvector_async(string_row_offsets, stream, rmm::mr::get_current_device_resource()); - auto dev_string_lengths = - make_device_uvector_async(string_lengths, stream, rmm::mr::get_current_device_resource()); - - // build the row_batches from the passed in list column - std::vector row_batches; - row_batches.push_back( - {detail::row_batch{child.size(), num_rows, device_uvector(0, stream)}}); - - auto dev_output_data = - make_device_uvector_async(output_data, stream, rmm::mr::get_current_device_resource()); - auto dev_output_nm = - make_device_uvector_async(output_nm, stream, rmm::mr::get_current_device_resource()); - - // only ever get a single batch when going from rows, so boundaries are 0, num_rows - constexpr auto num_batches = 2; - device_uvector gpu_batch_row_boundaries(num_batches, stream); - - thrust::transform(rmm::exec_policy(stream), - thrust::make_counting_iterator(0), - thrust::make_counting_iterator(num_batches), - gpu_batch_row_boundaries.begin(), - [num_rows] __device__(auto i) { return i == 0 ? 0 : num_rows; }); - - int info_count = 0; - detail::determine_tiles(column_info.column_sizes, - column_info.column_starts, - num_rows, - num_rows, - shmem_limit_per_tile, - [&gpu_batch_row_boundaries, &info_count, &stream]( - int const start_col, int const end_col, int const tile_height) { - info_count += detail::compute_tile_counts( - gpu_batch_row_boundaries, tile_height, stream); - }); - - // allocate space for tiles - device_uvector gpu_tile_infos(info_count, stream); - - int tile_offset = 0; - detail::determine_tiles( - column_info.column_sizes, - column_info.column_starts, - num_rows, - num_rows, - shmem_limit_per_tile, - [&gpu_batch_row_boundaries, &gpu_tile_infos, num_rows, &tile_offset, stream]( - int const start_col, int const end_col, int const tile_height) { - tile_offset += detail::build_tiles( - {gpu_tile_infos.data() + tile_offset, gpu_tile_infos.size() - tile_offset}, - gpu_batch_row_boundaries, - start_col, - end_col, - tile_height, - num_rows, - stream); - }); - - dim3 const blocks(gpu_tile_infos.size()); - - // validity needs to be calculated based on the actual number of final table columns - auto validity_tile_infos = - detail::build_validity_tile_infos(schema.size(), num_rows, shmem_limit_per_tile, row_batches); - - auto dev_validity_tile_infos = - make_device_uvector_async(validity_tile_infos, stream, rmm::mr::get_current_device_resource()); - - dim3 const validity_blocks(validity_tile_infos.size()); - - if (dev_string_row_offsets.size() == 0) { - detail::fixed_width_row_offset_functor offset_functor(size_per_row); - - detail::copy_from_rows<<>>(num_rows, - num_columns, - shmem_limit_per_tile, - offset_functor, - gpu_batch_row_boundaries.data(), - dev_output_data.data(), - dev_col_sizes.data(), - dev_col_starts.data(), - gpu_tile_infos, - child.data()); - - detail::copy_validity_from_rows<<>>(num_rows, - num_columns, - shmem_limit_per_tile, - offset_functor, - gpu_batch_row_boundaries.data(), - dev_output_nm.data(), - column_info.column_starts.back(), - dev_validity_tile_infos, - child.data()); - - } else { - detail::string_row_offset_functor offset_functor(device_span{input.offsets()}); - detail::copy_from_rows<<>>(num_rows, - num_columns, - shmem_limit_per_tile, - offset_functor, - gpu_batch_row_boundaries.data(), - dev_output_data.data(), - dev_col_sizes.data(), - dev_col_starts.data(), - gpu_tile_infos, - child.data()); - - detail::copy_validity_from_rows<<>>(num_rows, - num_columns, - shmem_limit_per_tile, - offset_functor, - gpu_batch_row_boundaries.data(), - dev_output_nm.data(), - column_info.column_starts.back(), - dev_validity_tile_infos, - child.data()); - - std::vector> string_col_offsets; - std::vector> string_data_cols; - std::vector string_col_offset_ptrs; - std::vector string_data_col_ptrs; - for (auto& col_string_lengths : string_lengths) { - device_uvector output_string_offsets(num_rows + 1, stream, mr); - auto tmp = [num_rows, col_string_lengths] __device__(auto const& i) { - return i < num_rows ? col_string_lengths[i] : 0; - }; - auto bounded_iter = cudf::detail::make_counting_transform_iterator(0, tmp); - thrust::exclusive_scan(rmm::exec_policy(stream), - bounded_iter, - bounded_iter + num_rows + 1, - output_string_offsets.begin()); - - // allocate destination string column - rmm::device_uvector string_data( - output_string_offsets.element(num_rows, stream), stream, mr); - - string_col_offset_ptrs.push_back(output_string_offsets.data()); - string_data_col_ptrs.push_back(string_data.data()); - string_col_offsets.push_back(std::move(output_string_offsets)); - string_data_cols.push_back(std::move(string_data)); - } - auto dev_string_col_offsets = make_device_uvector_async( - string_col_offset_ptrs, stream, rmm::mr::get_current_device_resource()); - auto dev_string_data_cols = make_device_uvector_async( - string_data_col_ptrs, stream, rmm::mr::get_current_device_resource()); - - dim3 const string_blocks( - std::min(std::max(MIN_STRING_BLOCKS, num_rows / NUM_STRING_ROWS_PER_BLOCK_FROM_ROWS), - MAX_STRING_BLOCKS)); - - detail::copy_strings_from_rows<<>>( - offset_functor, - dev_string_row_offsets.data(), - dev_string_lengths.data(), - dev_string_col_offsets.data(), - dev_string_data_cols.data(), - child.data(), - num_rows, - static_cast(string_col_offsets.size())); - - // merge strings back into output_columns - int string_idx = 0; - for (int i = 0; i < static_cast(schema.size()); ++i) { - if (schema[i].id() == type_id::STRING) { - // stuff real string column - auto string_data = string_row_offset_columns[string_idx].release()->release(); - output_columns[i] = make_strings_column(num_rows, - std::move(string_col_offsets[string_idx]), - std::move(string_data_cols[string_idx]), - std::move(*string_data.null_mask.release()), - 0); - // Null count set to 0, temporarily. Will be fixed up before return. - string_idx++; - } - } - } - - // Set null counts, because output_columns are modified via mutable-view, - // in the kernel above. - // TODO(future): Consider setting null count in the kernel itself. - fixup_null_counts(output_columns, stream); - - return std::make_unique
(std::move(output_columns)); -} - -std::unique_ptr
convert_from_rows_fixed_width_optimized(lists_column_view const& input, - std::vector const& schema, - rmm::cuda_stream_view stream, - rmm::mr::device_memory_resource* mr) -{ - // verify that the types are what we expect - column_view child = input.child(); - auto const list_type = child.type().id(); - CUDF_EXPECTS(list_type == type_id::INT8 || list_type == type_id::UINT8, - "Only a list of bytes is supported as input"); - - auto const num_columns = schema.size(); - - if (detail::are_all_fixed_width(schema)) { - std::vector column_start; - std::vector column_size; - - auto const num_rows = input.parent().size(); - auto const size_per_row = detail::compute_fixed_width_layout(schema, column_start, column_size); - - // Ideally we would check that the offsets are all the same, etc. but for now this is probably - // fine - CUDF_EXPECTS(size_per_row * num_rows == child.size(), - "The layout of the data appears to be off"); - auto dev_column_start = - make_device_uvector_async(column_start, stream, rmm::mr::get_current_device_resource()); - auto dev_column_size = - make_device_uvector_async(column_size, stream, rmm::mr::get_current_device_resource()); - - // Allocate the columns we are going to write into - std::vector> output_columns; - std::vector output_data; - std::vector output_nm; - for (int i = 0; i < static_cast(num_columns); i++) { - auto column = - make_fixed_width_column(schema[i], num_rows, mask_state::UNINITIALIZED, stream, mr); - auto mut = column->mutable_view(); - output_data.emplace_back(mut.data()); - output_nm.emplace_back(mut.null_mask()); - output_columns.emplace_back(std::move(column)); - } - - auto dev_output_data = make_device_uvector_async(output_data, stream, mr); - auto dev_output_nm = make_device_uvector_async(output_nm, stream, mr); - - dim3 blocks; - dim3 threads; - int shared_size = - detail::calc_fixed_width_kernel_dims(num_columns, num_rows, size_per_row, blocks, threads); - - detail::copy_from_rows_fixed_width_optimized<<>>( - num_rows, - num_columns, - size_per_row, - dev_column_start.data(), - dev_column_size.data(), - dev_output_data.data(), - dev_output_nm.data(), - child.data()); - - // Set null counts, because output_columns are modified via mutable-view, - // in the kernel above. - // TODO(future): Consider setting null count in the kernel itself. - fixup_null_counts(output_columns, stream); - - return std::make_unique
(std::move(output_columns)); - } else { - CUDF_FAIL("Only fixed width types are currently supported"); - } -} - -} // namespace spark_rapids_jni diff --git a/src/main/cpp/src/row_conversion.hpp b/src/main/cpp/src/row_conversion.hpp deleted file mode 100644 index 6e9835e3d2..0000000000 --- a/src/main/cpp/src/row_conversion.hpp +++ /dev/null @@ -1,53 +0,0 @@ -/* - * Copyright (c) 2022-2023, NVIDIA CORPORATION. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#pragma once - -#include -#include -#include - -#include - -#include - -namespace spark_rapids_jni { - -std::vector> convert_to_rows_fixed_width_optimized( - cudf::table_view const& tbl, - // TODO need something for validity - rmm::cuda_stream_view stream = cudf::get_default_stream(), - rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()); - -std::vector> convert_to_rows( - cudf::table_view const& tbl, - // TODO need something for validity - rmm::cuda_stream_view stream = cudf::get_default_stream(), - rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()); - -std::unique_ptr convert_from_rows_fixed_width_optimized( - cudf::lists_column_view const& input, - std::vector const& schema, - rmm::cuda_stream_view stream = cudf::get_default_stream(), - rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()); - -std::unique_ptr convert_from_rows( - cudf::lists_column_view const& input, - std::vector const& schema, - rmm::cuda_stream_view stream = cudf::get_default_stream(), - rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()); - -} // namespace spark_rapids_jni diff --git a/src/main/cpp/tests/CMakeLists.txt b/src/main/cpp/tests/CMakeLists.txt index b34b1b8b01..617df6dfde 100644 --- a/src/main/cpp/tests/CMakeLists.txt +++ b/src/main/cpp/tests/CMakeLists.txt @@ -60,9 +60,6 @@ ConfigureTest(CAST_FLOAT_TO_STRING ConfigureTest(DATETIME_REBASE datetime_rebase.cpp) -ConfigureTest(ROW_CONVERSION - row_conversion.cpp) - ConfigureTest(HASH hash.cpp) diff --git a/src/main/cpp/tests/row_conversion.cpp b/src/main/cpp/tests/row_conversion.cpp deleted file mode 100644 index 7e104c3871..0000000000 --- a/src/main/cpp/tests/row_conversion.cpp +++ /dev/null @@ -1,1043 +0,0 @@ -/* - * Copyright (c) 2022, NVIDIA CORPORATION. - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -#include -#include -#include - -#include - -struct ColumnToRowTests : public cudf::test::BaseFixture {}; -struct RowToColumnTests : public cudf::test::BaseFixture {}; - -TEST_F(ColumnToRowTests, Single) -{ - cudf::test::fixed_width_column_wrapper a({-1}); - cudf::table_view in(std::vector{a}); - std::vector schema = {cudf::data_type{cudf::type_id::INT32}}; - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - for (uint i = 0; i < old_rows.size(); ++i) { - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*new_rows[i]), schema); - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, SimpleString) -{ - cudf::test::fixed_width_column_wrapper a({-1, 0, 1, 0, -1}); - cudf::test::strings_column_wrapper b( - {"hello", "world", "this is a really long string to generate a longer row", "dlrow", "olleh"}); - cudf::table_view in(std::vector{a, b}); - std::vector schema = {cudf::data_type{cudf::type_id::INT32}}; - - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(new_rows[0]->size(), 5); -} - -TEST_F(ColumnToRowTests, DoubleString) -{ - cudf::test::strings_column_wrapper a( - {"hello", "world", "this is a really long string to generate a longer row", "dlrow", "olleh"}); - cudf::test::fixed_width_column_wrapper b({0, 1, 2, 3, 4}); - cudf::test::strings_column_wrapper c({"world", - "hello", - "this string isn't as long", - "this one isn't so short though when you think about it", - "dlrow"}); - cudf::table_view in(std::vector{a, b, c}); - - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(new_rows[0]->size(), 5); -} - -TEST_F(ColumnToRowTests, BigStrings) -{ - char const* TEST_STRINGS[] = { - "These", - "are", - "the", - "test", - "strings", - "that", - "we", - "have", - "some are really long", - "and some are kinda short", - "They are all over on purpose with different sizes for the strings in order to test the code " - "on all different lengths of strings", - "a", - "good test", - "is required to produce reasonable confidence that this is working"}; - auto num_generator = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - auto string_generator = - cudf::detail::make_counting_transform_iterator(0, [&](auto i) -> char const* { - return TEST_STRINGS[rand() % (sizeof(TEST_STRINGS) / sizeof(TEST_STRINGS[0]))]; - }); - - auto const num_rows = 50; - auto const num_cols = 50; - std::vector schema; - - std::vector cols; - std::vector views; - - for (auto col = 0; col < num_cols; ++col) { - if (rand() % 2) { - cols.emplace_back( - cudf::test::fixed_width_column_wrapper(num_generator, num_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::data_type{cudf::type_id::INT32}); - } else { - cols.emplace_back( - cudf::test::strings_column_wrapper(string_generator, string_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::type_id::STRING); - } - } - - cudf::table_view in(views); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(new_rows[0]->size(), num_rows); -} - -TEST_F(ColumnToRowTests, ManyStrings) -{ - char const* TEST_STRINGS[] = { - "These", - "are", - "the", - "test", - "strings", - "that", - "we", - "have", - "some are really long", - "and some are kinda short", - "They are all over on purpose with different sizes for the strings in order to test the code " - "on all different lengths of strings", - "a", - "good test", - "is required to produce reasonable confidence that this is working", - "some strings", - "are split into multiple strings", - "some strings have all their data", - "lots of choices of strings and sizes is sure to test the offset calculation code to ensure " - "that even a really long string ends up in the correct spot for the final destination allowing " - "for even crazy run-on sentences to be inserted into the data"}; - auto num_generator = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - auto string_generator = - cudf::detail::make_counting_transform_iterator(0, [&](auto i) -> char const* { - return TEST_STRINGS[rand() % (sizeof(TEST_STRINGS) / sizeof(TEST_STRINGS[0]))]; - }); - - auto const num_rows = 1000000; - auto const num_cols = 50; - std::vector schema; - - std::vector cols; - std::vector views; - - for (auto col = 0; col < num_cols; ++col) { - if (rand() % 2) { - cols.emplace_back( - cudf::test::fixed_width_column_wrapper(num_generator, num_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::data_type{cudf::type_id::INT32}); - } else { - cols.emplace_back( - cudf::test::strings_column_wrapper(string_generator, string_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::type_id::STRING); - } - } - - cudf::table_view in(views); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(new_rows[0]->size(), num_rows); -} - -TEST_F(ColumnToRowTests, Simple) -{ - cudf::test::fixed_width_column_wrapper a({-1, 0, 1}); - cudf::table_view in(std::vector{a}); - std::vector schema = {cudf::data_type{cudf::type_id::INT32}}; - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, Tall) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - cudf::test::fixed_width_column_wrapper a(r, r + (size_t)4096); - cudf::table_view in(std::vector{a}); - std::vector schema = {cudf::data_type{cudf::type_id::INT32}}; - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, Wide) -{ - std::vector> cols; - std::vector views; - std::vector schema; - - for (int i = 0; i < 256; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper({rand()})); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, SingleByteWide) -{ - std::vector> cols; - std::vector views; - std::vector schema; - - for (int i = 0; i < 256; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper({rand()})); - views.push_back(cols.back()); - - schema.push_back(cudf::data_type{cudf::type_id::INT8}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, Non2Power) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - constexpr auto num_rows = 6 * 1024 + 557; - for (int i = 0; i < 131; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - for (int j = 0; j < old_tbl->num_columns(); ++j) { - CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(old_tbl->get_column(j), new_tbl->get_column(j)); - } - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, Big) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - // 28 columns of 1 million rows - constexpr auto num_rows = 1024 * 1024; - for (int i = 0; i < 28; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - for (int j = 0; j < old_tbl->num_columns(); ++j) { - CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(old_tbl->get_column(j), new_tbl->get_column(j)); - } - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, Bigger) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - // 128 columns of 1 million rows - constexpr auto num_rows = 1024 * 1024; - for (int i = 0; i < 128; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - for (int j = 0; j < old_tbl->num_columns(); ++j) { - CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(old_tbl->get_column(j), new_tbl->get_column(j)); - } - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(ColumnToRowTests, Biggest) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - // 128 columns of 2 million rows - constexpr auto num_rows = 2 * 1024 * 1024; - for (int i = 0; i < 128; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - EXPECT_EQ(old_rows.size(), new_rows.size()); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - for (int j = 0; j < old_tbl->num_columns(); ++j) { - CUDF_TEST_EXPECT_COLUMNS_EQUIVALENT(old_tbl->get_column(j), new_tbl->get_column(j)); - } - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Single) -{ - cudf::test::fixed_width_column_wrapper a({-1}); - cudf::table_view in(std::vector{a}); - - auto old_rows = spark_rapids_jni::convert_to_rows(in); - std::vector schema{cudf::data_type{cudf::type_id::INT32}}; - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Simple) -{ - cudf::test::fixed_width_column_wrapper a({-1, 0, 1}); - cudf::table_view in(std::vector{a}); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - std::vector schema{cudf::data_type{cudf::type_id::INT32}}; - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Tall) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - cudf::test::fixed_width_column_wrapper a(r, r + (size_t)4096); - cudf::table_view in(std::vector{a}); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - std::vector schema; - schema.reserve(in.num_columns()); - for (auto col = in.begin(); col < in.end(); ++col) { - schema.push_back(col->type()); - } - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Wide) -{ - std::vector> cols; - std::vector views; - - for (int i = 0; i < 256; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper({i})); // rand()})); - views.push_back(cols.back()); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - std::vector schema; - schema.reserve(in.num_columns()); - for (auto col = in.begin(); col < in.end(); ++col) { - schema.push_back(col->type()); - } - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, SingleByteWide) -{ - std::vector> cols; - std::vector views; - - for (int i = 0; i < 256; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper({rand()})); - views.push_back(cols.back()); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - std::vector schema; - schema.reserve(in.num_columns()); - for (auto col = in.begin(); col < in.end(); ++col) { - schema.push_back(col->type()); - } - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, AllTypes) -{ - std::vector> cols; - std::vector views; - std::vector schema{cudf::data_type{cudf::type_id::INT64}, - cudf::data_type{cudf::type_id::FLOAT64}, - cudf::data_type{cudf::type_id::INT8}, - cudf::data_type{cudf::type_id::BOOL8}, - cudf::data_type{cudf::type_id::FLOAT32}, - cudf::data_type{cudf::type_id::INT8}, - cudf::data_type{cudf::type_id::INT32}, - cudf::data_type{cudf::type_id::INT64}}; - - cudf::test::fixed_width_column_wrapper c0({3, 9, 4, 2, 20, 0}, {1, 1, 1, 1, 1, 0}); - cudf::test::fixed_width_column_wrapper c1({5.0, 9.5, 0.9, 7.23, 2.8, 0.0}, - {1, 1, 1, 1, 1, 0}); - cudf::test::fixed_width_column_wrapper c2({5, 1, 0, 2, 7, 0}, {1, 1, 1, 1, 1, 0}); - cudf::test::fixed_width_column_wrapper c3({true, false, false, true, false, false}, - {1, 1, 1, 1, 1, 0}); - cudf::test::fixed_width_column_wrapper c4({1.0f, 3.5f, 5.9f, 7.1f, 9.8f, 0.0f}, - {1, 1, 1, 1, 1, 0}); - cudf::test::fixed_width_column_wrapper c5({2, 3, 4, 5, 9, 0}, {1, 1, 1, 1, 1, 0}); - cudf::test::fixed_point_column_wrapper c6( - {-300, 500, 950, 90, 723, 0}, {1, 1, 1, 1, 1, 1, 1, 0}, numeric::scale_type{-2}); - cudf::test::fixed_point_column_wrapper c7( - {-80, 30, 90, 20, 200, 0}, {1, 1, 1, 1, 1, 1, 0}, numeric::scale_type{-1}); - - cudf::table_view in({c0, c1, c2, c3, c4, c5, c6, c7}); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*new_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, AllTypesLarge) -{ - std::vector cols; - std::vector schema{}; - - // 15 columns of each type with 1 million entries - constexpr int num_rows{1024 * 1024 * 1}; - - std::default_random_engine re; - std::uniform_real_distribution rand_double(std::numeric_limits::min(), - std::numeric_limits::max()); - std::uniform_int_distribution rand_int64(std::numeric_limits::min(), - std::numeric_limits::max()); - auto r = cudf::detail::make_counting_transform_iterator( - 0, [&](auto i) -> int64_t { return rand_int64(re); }); - auto d = cudf::detail::make_counting_transform_iterator( - 0, [&](auto i) -> double { return rand_double(re); }); - - auto all_valid = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 1; }); - auto none_valid = cudf::detail::make_counting_transform_iterator(0, [](auto i) { return 0; }); - auto most_valid = cudf::detail::make_counting_transform_iterator( - 0, [](auto i) { return rand() % 2 == 0 ? 0 : 1; }); - auto few_valid = cudf::detail::make_counting_transform_iterator( - 0, [](auto i) { return rand() % 13 == 0 ? 1 : 0; }); - - for (int i = 0; i < 15; ++i) { - cols.push_back(*cudf::test::fixed_width_column_wrapper(r, r + num_rows, all_valid) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::INT8}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back(*cudf::test::fixed_width_column_wrapper(r, r + num_rows, few_valid) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::INT16}); - } - - for (int i = 0; i < 15; ++i) { - if (i < 5) { - cols.push_back(*cudf::test::fixed_width_column_wrapper(r, r + num_rows, few_valid) - .release() - .release()); - } else { - cols.push_back(*cudf::test::fixed_width_column_wrapper(r, r + num_rows, none_valid) - .release() - .release()); - } - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back(*cudf::test::fixed_width_column_wrapper(d, d + num_rows, most_valid) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::FLOAT32}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back(*cudf::test::fixed_width_column_wrapper(d, d + num_rows, most_valid) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::FLOAT64}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back(*cudf::test::fixed_width_column_wrapper(r, r + num_rows, few_valid) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::BOOL8}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back( - *cudf::test::fixed_width_column_wrapper( - r, r + num_rows, all_valid) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::TIMESTAMP_MILLISECONDS}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back( - *cudf::test::fixed_width_column_wrapper( - r, r + num_rows, most_valid) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::TIMESTAMP_DAYS}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back(*cudf::test::fixed_point_column_wrapper( - r, r + num_rows, all_valid, numeric::scale_type{-2}) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::DECIMAL32}); - } - - for (int i = 0; i < 15; ++i) { - cols.push_back(*cudf::test::fixed_point_column_wrapper( - r, r + num_rows, most_valid, numeric::scale_type{-1}) - .release() - .release()); - schema.push_back(cudf::data_type{cudf::type_id::DECIMAL64}); - } - - std::vector views(cols.begin(), cols.end()); - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*new_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Non2Power) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - constexpr auto num_rows = 6 * 1024 + 557; - for (int i = 0; i < 131; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Big) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - // 28 columns of 1 million rows - constexpr auto num_rows = 1024 * 1024; - for (int i = 0; i < 28; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Bigger) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - // 28 columns of 1 million rows - constexpr auto num_rows = 1024 * 1024; - for (int i = 0; i < 128; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*old_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, Biggest) -{ - auto r = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - std::vector> cols; - std::vector views; - std::vector schema; - - // 128 columns of 1 million rows - constexpr auto num_rows = 5 * 1024 * 1024; - for (int i = 0; i < 128; ++i) { - cols.push_back(cudf::test::fixed_width_column_wrapper(r + num_rows * i, - r + num_rows * i + num_rows)); - views.push_back(cols.back()); - schema.push_back(cudf::data_type{cudf::type_id::INT32}); - } - cudf::table_view in(views); - - auto old_rows = spark_rapids_jni::convert_to_rows_fixed_width_optimized(in); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - for (uint i = 0; i < old_rows.size(); ++i) { - auto old_tbl = spark_rapids_jni::convert_from_rows_fixed_width_optimized( - cudf::lists_column_view(*old_rows[i]), schema); - auto new_tbl = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*new_rows[i]), schema); - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(*old_tbl, *new_tbl); - } -} - -TEST_F(RowToColumnTests, SimpleString) -{ - cudf::test::fixed_width_column_wrapper a({-1, 0, 1, 0, -1}); - cudf::test::strings_column_wrapper b( - {"hello", "world", "this is a really long string to generate a longer row", "dlrow", "olleh"}); - cudf::table_view in(std::vector{a, b}); - std::vector schema = {cudf::data_type{cudf::type_id::INT32}, - cudf::data_type{cudf::type_id::STRING}}; - - auto new_rows = spark_rapids_jni::convert_to_rows(in); - EXPECT_EQ(new_rows.size(), 1); - for (auto& row : new_rows) { - auto new_cols = spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*row), schema); - - EXPECT_EQ(row->size(), 5); - auto const num_columns = new_cols->num_columns(); - - cudf::strings_column_view str_col = new_cols->get_column(1).view(); - std::vector> col_data; - std::vector> offset_data; - for (int i = 0; i < num_columns; ++i) { - offset_data.emplace_back( - std::get<0>(cudf::test::to_host(str_col.offsets()))); - col_data.emplace_back(std::get<0>(cudf::test::to_host(str_col.chars()))); - } - - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(in, *new_cols); - } -} - -TEST_F(RowToColumnTests, DoubleString) -{ - cudf::test::strings_column_wrapper a( - {"hello", "world", "this is a really long string to generate a longer row", "dlrow", "olleh"}); - cudf::test::fixed_width_column_wrapper b({0, 1, 2, 3, 4}); - cudf::test::strings_column_wrapper c({"world", - "hello", - "this string isn't as long", - "this one isn't so short though when you think about it", - "dlrow"}); - cudf::table_view in(std::vector{a, b, c}); - std::vector schema = {cudf::data_type{cudf::type_id::STRING}, - cudf::data_type{cudf::type_id::INT32}, - cudf::data_type{cudf::type_id::STRING}}; - - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - for (uint i = 0; i < new_rows.size(); ++i) { - auto new_cols = - spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*new_rows[i]), schema); - - EXPECT_EQ(new_rows[0]->size(), 5); - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(in, *new_cols); - } -} - -TEST_F(RowToColumnTests, BigStrings) -{ - char const* TEST_STRINGS[] = { - "These", - "are", - "the", - "test", - "strings", - "that", - "we", - "have", - "some are really long", - "and some are kinda short", - "They are all over on purpose with different sizes for the strings in order to test the code " - "on all different lengths of strings", - "a", - "good test", - "is required to produce reasonable confidence that this is working"}; - auto num_generator = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - auto string_generator = - cudf::detail::make_counting_transform_iterator(0, [&](auto i) -> char const* { - return TEST_STRINGS[rand() % (sizeof(TEST_STRINGS) / sizeof(TEST_STRINGS[0]))]; - }); - - auto const num_rows = 50; - auto const num_cols = 50; - std::vector schema; - - std::vector cols; - std::vector views; - - for (auto col = 0; col < num_cols; ++col) { - if (rand() % 2) { - cols.emplace_back( - cudf::test::fixed_width_column_wrapper(num_generator, num_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::data_type{cudf::type_id::INT32}); - } else { - cols.emplace_back( - cudf::test::strings_column_wrapper(string_generator, string_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::type_id::STRING); - } - } - - cudf::table_view in(views); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - for (auto& i : new_rows) { - auto new_cols = spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*i), schema); - - auto in_view = cudf::slice(in, {0, new_cols->num_rows()}); - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(in_view[0], *new_cols); - } -} - -TEST_F(RowToColumnTests, ManyStrings) -{ - char const* TEST_STRINGS[] = { - "These", - "are", - "the", - "test", - "strings", - "that", - "we", - "have", - "some are really long", - "and some are kinda short", - "They are all over on purpose with different sizes for the strings in order to test the code " - "on all different lengths of strings", - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "this string is the longest string because it is duplicated more than you can imagine " - "a", - "good test", - "is required to produce reasonable confidence that this is working", - "some strings", - "are split into multiple strings", - "some strings have all their data", - "lots of choices of strings and sizes is sure to test the offset calculation code to ensure " - "that even a really long string ends up in the correct spot for the final destination allowing " - "for even crazy run-on sentences to be inserted into the data"}; - auto num_generator = - cudf::detail::make_counting_transform_iterator(0, [](auto i) -> int32_t { return rand(); }); - auto string_generator = - cudf::detail::make_counting_transform_iterator(0, [&](auto i) -> char const* { - return TEST_STRINGS[rand() % (sizeof(TEST_STRINGS) / sizeof(TEST_STRINGS[0]))]; - }); - - auto const num_rows = 500000; - auto const num_cols = 50; - std::vector schema; - - std::vector cols; - std::vector views; - - for (auto col = 0; col < num_cols; ++col) { - if (rand() % 2) { - cols.emplace_back( - cudf::test::fixed_width_column_wrapper(num_generator, num_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::data_type{cudf::type_id::INT32}); - } else { - cols.emplace_back( - cudf::test::strings_column_wrapper(string_generator, string_generator + num_rows)); - views.push_back(cols.back()); - schema.emplace_back(cudf::type_id::STRING); - } - } - - cudf::table_view in(views); - auto new_rows = spark_rapids_jni::convert_to_rows(in); - - for (auto& i : new_rows) { - auto new_cols = spark_rapids_jni::convert_from_rows(cudf::lists_column_view(*i), schema); - - auto in_view = cudf::slice(in, {0, new_cols->num_rows()}); - CUDF_TEST_EXPECT_TABLES_EQUIVALENT(in_view[0], *new_cols); - } -} From 3208e7d98ecbeac31ca07dc930c5af6f2c44759f Mon Sep 17 00:00:00 2001 From: Mike Wilson Date: Wed, 20 Dec 2023 22:46:17 -0500 Subject: [PATCH 2/6] Apply suggestions from code review --- src/main/cpp/src/RowConversionJni.cpp | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/main/cpp/src/RowConversionJni.cpp b/src/main/cpp/src/RowConversionJni.cpp index 6a2c3388d8..8a00f2d7e0 100644 --- a/src/main/cpp/src/RowConversionJni.cpp +++ b/src/main/cpp/src/RowConversionJni.cpp @@ -30,7 +30,7 @@ Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRowsFixedWidthOptimized( cudf::table_view const *n_input_table = reinterpret_cast(input_table); std::vector> cols = - cudf::jni::convert_to_rows_fixed_width_optimized(*n_input_table); + cudf::convert_to_rows_fixed_width_optimized(*n_input_table); int const num_columns = cols.size(); cudf::jni::native_jlongArray outcol_handles(env, num_columns); std::transform(cols.begin(), cols.end(), outcol_handles.begin(), @@ -50,7 +50,7 @@ Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRows( cudf::table_view const *n_input_table = reinterpret_cast(input_table); std::vector> cols = - cudf::jni::convert_to_rows(*n_input_table); + cudf::convert_to_rows(*n_input_table); int const num_columns = cols.size(); cudf::jni::native_jlongArray outcol_handles(env, num_columns); std::transform(cols.begin(), cols.end(), outcol_handles.begin(), @@ -82,7 +82,7 @@ Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRowsFixedWidthOptimize return cudf::jni::make_data_type(type, scale); }); std::unique_ptr result = - cudf::jni::convert_from_rows_fixed_width_optimized(list_input, + cudf::convert_from_rows_fixed_width_optimized(list_input, types_vec); return cudf::jni::convert_table_for_return(env, result); } @@ -111,7 +111,7 @@ Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRows( return cudf::jni::make_data_type(type, scale); }); std::unique_ptr result = - cudf::jni::convert_from_rows(list_input, types_vec); + cudf::convert_from_rows(list_input, types_vec); return cudf::jni::convert_table_for_return(env, result); } CATCH_STD(env, 0); From 8c6487bd8393b9cfb239ae703aa326ac90154deb Mon Sep 17 00:00:00 2001 From: Nghia Truong Date: Wed, 20 Dec 2023 19:55:03 -0800 Subject: [PATCH 3/6] Fix styles Signed-off-by: Nghia Truong --- src/main/cpp/benchmarks/row_conversion.cpp | 84 +++++++++++++--------- src/main/cpp/src/RowConversionJni.cpp | 3 +- 2 files changed, 50 insertions(+), 37 deletions(-) diff --git a/src/main/cpp/benchmarks/row_conversion.cpp b/src/main/cpp/benchmarks/row_conversion.cpp index f38b4288c9..b8694fbcdf 100644 --- a/src/main/cpp/benchmarks/row_conversion.cpp +++ b/src/main/cpp/benchmarks/row_conversion.cpp @@ -24,16 +24,21 @@ #include #include -void fixed_width(nvbench::state &state) { +void fixed_width(nvbench::state& state) +{ cudf::size_type const n_rows{(cudf::size_type)state.get_int64("num_rows")}; auto const direction = state.get_string("direction"); - auto const table = create_random_table( - cycle_dtypes( - {cudf::type_id::INT8, cudf::type_id::INT32, cudf::type_id::INT16, - cudf::type_id::INT64, cudf::type_id::INT32, cudf::type_id::BOOL8, - cudf::type_id::UINT16, cudf::type_id::UINT8, cudf::type_id::UINT64}, - 212), - row_count{n_rows}); + auto const table = create_random_table(cycle_dtypes({cudf::type_id::INT8, + cudf::type_id::INT32, + cudf::type_id::INT16, + cudf::type_id::INT64, + cudf::type_id::INT32, + cudf::type_id::BOOL8, + cudf::type_id::UINT16, + cudf::type_id::UINT8, + cudf::type_id::UINT64}, + 212), + row_count{n_rows}); std::vector schema; cudf::size_type bytes_per_row = 0; @@ -45,11 +50,11 @@ void fixed_width(nvbench::state &state) { auto rows = cudf::convert_to_rows_fixed_width_optimized(table->view()); - state.exec(nvbench::exec_tag::sync, [&](nvbench::launch &launch) { + state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { if (direction == "to row") { auto _rows = cudf::convert_to_rows_fixed_width_optimized(table->view()); } else { - for (auto const &r : rows) { + for (auto const& r : rows) { cudf::lists_column_view const l(r->view()); auto out = cudf::convert_from_rows_fixed_width_optimized(l, schema); } @@ -60,9 +65,10 @@ void fixed_width(nvbench::state &state) { state.add_global_memory_reads(bytes_per_row * table->num_rows()); } -static void variable_or_fixed_width(nvbench::state &state) { +static void variable_or_fixed_width(nvbench::state& state) +{ cudf::size_type const n_rows{(cudf::size_type)state.get_int64("num_rows")}; - auto const direction = state.get_string("direction"); + auto const direction = state.get_string("direction"); auto const include_strings = state.get_string("strings"); if (n_rows > 1 * 1024 * 1024 && include_strings == "include strings") { @@ -70,28 +76,36 @@ static void variable_or_fixed_width(nvbench::state &state) { return; } - std::vector const table_types = - [&]() -> std::vector { + std::vector const table_types = [&]() -> std::vector { if (include_strings == "include strings") { - return {cudf::type_id::INT8, cudf::type_id::INT32, - cudf::type_id::INT16, cudf::type_id::INT64, - cudf::type_id::INT32, cudf::type_id::BOOL8, - cudf::type_id::STRING, cudf::type_id::UINT16, - cudf::type_id::UINT8, cudf::type_id::UINT64}; + return {cudf::type_id::INT8, + cudf::type_id::INT32, + cudf::type_id::INT16, + cudf::type_id::INT64, + cudf::type_id::INT32, + cudf::type_id::BOOL8, + cudf::type_id::STRING, + cudf::type_id::UINT16, + cudf::type_id::UINT8, + cudf::type_id::UINT64}; } else { - return { - cudf::type_id::INT8, cudf::type_id::INT32, cudf::type_id::INT16, - cudf::type_id::INT64, cudf::type_id::INT32, cudf::type_id::BOOL8, - cudf::type_id::UINT16, cudf::type_id::UINT8, cudf::type_id::UINT64}; + return {cudf::type_id::INT8, + cudf::type_id::INT32, + cudf::type_id::INT16, + cudf::type_id::INT64, + cudf::type_id::INT32, + cudf::type_id::BOOL8, + cudf::type_id::UINT16, + cudf::type_id::UINT8, + cudf::type_id::UINT64}; } }(); - auto const table = - create_random_table(cycle_dtypes(table_types, 155), row_count{n_rows}); + auto const table = create_random_table(cycle_dtypes(table_types, 155), row_count{n_rows}); std::vector schema; cudf::size_type bytes_per_row = 0; - cudf::size_type string_bytes = 0; + cudf::size_type string_bytes = 0; for (int i = 0; i < table->num_columns(); ++i) { auto t = table->get_column(i).type(); schema.push_back(t); @@ -105,12 +119,12 @@ static void variable_or_fixed_width(nvbench::state &state) { auto rows = cudf::convert_to_rows(table->view()); - state.exec(nvbench::exec_tag::sync, [&](nvbench::launch &launch) { + state.exec(nvbench::exec_tag::sync, [&](nvbench::launch& launch) { auto new_rows = cudf::convert_to_rows(table->view()); if (direction == "to row") { auto _rows = cudf::convert_to_rows(table->view()); } else { - for (auto const &r : rows) { + for (auto const& r : rows) { cudf::lists_column_view const l(r->view()); auto out = cudf::convert_from_rows(l, schema); } @@ -122,12 +136,12 @@ static void variable_or_fixed_width(nvbench::state &state) { } NVBENCH_BENCH(fixed_width) - .set_name("Fixed Width Only") - .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) - .add_string_axis("direction", {"to row", "from row"}); + .set_name("Fixed Width Only") + .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) + .add_string_axis("direction", {"to row", "from row"}); NVBENCH_BENCH(variable_or_fixed_width) - .set_name("Fixed or Variable Width") - .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) - .add_string_axis("direction", {"to row", "from row"}) - .add_string_axis("strings", {"include strings", "no strings"}); + .set_name("Fixed or Variable Width") + .add_int64_axis("num_rows", {1 * 1024 * 1024, 4 * 1024 * 1024}) + .add_string_axis("direction", {"to row", "from row"}) + .add_string_axis("strings", {"include strings", "no strings"}); diff --git a/src/main/cpp/src/RowConversionJni.cpp b/src/main/cpp/src/RowConversionJni.cpp index 8a00f2d7e0..ec68f1414e 100644 --- a/src/main/cpp/src/RowConversionJni.cpp +++ b/src/main/cpp/src/RowConversionJni.cpp @@ -82,8 +82,7 @@ Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRowsFixedWidthOptimize return cudf::jni::make_data_type(type, scale); }); std::unique_ptr result = - cudf::convert_from_rows_fixed_width_optimized(list_input, - types_vec); + cudf::convert_from_rows_fixed_width_optimized(list_input, types_vec); return cudf::jni::convert_table_for_return(env, result); } CATCH_STD(env, 0); From 380c2184890fb680f5bc597dc0b33796b7d4636d Mon Sep 17 00:00:00 2001 From: Mike Wilson Date: Thu, 21 Dec 2023 03:56:46 +0000 Subject: [PATCH 4/6] linting Signed-off-by: Mike Wilson --- src/main/cpp/src/RowConversionJni.cpp | 77 +++++++++++++-------------- 1 file changed, 38 insertions(+), 39 deletions(-) diff --git a/src/main/cpp/src/RowConversionJni.cpp b/src/main/cpp/src/RowConversionJni.cpp index ec68f1414e..89e104426a 100644 --- a/src/main/cpp/src/RowConversionJni.cpp +++ b/src/main/cpp/src/RowConversionJni.cpp @@ -21,40 +21,41 @@ extern "C" { JNIEXPORT jlongArray JNICALL -Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRowsFixedWidthOptimized( - JNIEnv *env, jclass, jlong input_table) { +Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRowsFixedWidthOptimized(JNIEnv* env, + jclass, + jlong input_table) +{ JNI_NULL_CHECK(env, input_table, "input table is null", 0); try { cudf::jni::auto_set_device(env); - cudf::table_view const *n_input_table = - reinterpret_cast(input_table); + cudf::table_view const* n_input_table = reinterpret_cast(input_table); std::vector> cols = - cudf::convert_to_rows_fixed_width_optimized(*n_input_table); + cudf::convert_to_rows_fixed_width_optimized(*n_input_table); int const num_columns = cols.size(); cudf::jni::native_jlongArray outcol_handles(env, num_columns); - std::transform(cols.begin(), cols.end(), outcol_handles.begin(), - [](auto &col) { return cudf::jni::release_as_jlong(col); }); + std::transform(cols.begin(), cols.end(), outcol_handles.begin(), [](auto& col) { + return cudf::jni::release_as_jlong(col); + }); return outcol_handles.get_jArray(); } CATCH_STD(env, 0); } JNIEXPORT jlongArray JNICALL -Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRows( - JNIEnv *env, jclass, jlong input_table) { +Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRows(JNIEnv* env, jclass, jlong input_table) +{ JNI_NULL_CHECK(env, input_table, "input table is null", 0); try { cudf::jni::auto_set_device(env); - cudf::table_view const *n_input_table = - reinterpret_cast(input_table); - std::vector> cols = - cudf::convert_to_rows(*n_input_table); - int const num_columns = cols.size(); + cudf::table_view const* n_input_table = reinterpret_cast(input_table); + std::vector> cols = cudf::convert_to_rows(*n_input_table); + int const num_columns = cols.size(); cudf::jni::native_jlongArray outcol_handles(env, num_columns); - std::transform(cols.begin(), cols.end(), outcol_handles.begin(), - [](auto &col) { return cudf::jni::release_as_jlong(col); }); + std::transform(cols.begin(), cols.end(), outcol_handles.begin(), [](auto& col) { + return cudf::jni::release_as_jlong(col); + }); return outcol_handles.get_jArray(); } CATCH_STD(env, 0); @@ -62,55 +63,53 @@ Java_com_nvidia_spark_rapids_jni_RowConversion_convertToRows( JNIEXPORT jlongArray JNICALL Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRowsFixedWidthOptimized( - JNIEnv *env, jclass, jlong input_column, jintArray types, jintArray scale) { + JNIEnv* env, jclass, jlong input_column, jintArray types, jintArray scale) +{ JNI_NULL_CHECK(env, input_column, "input column is null", 0); JNI_NULL_CHECK(env, types, "types is null", 0); try { cudf::jni::auto_set_device(env); - cudf::lists_column_view const list_input{ - *reinterpret_cast(input_column)}; + cudf::lists_column_view const list_input{*reinterpret_cast(input_column)}; cudf::jni::native_jintArray n_types(env, types); cudf::jni::native_jintArray n_scale(env, scale); if (n_types.size() != n_scale.size()) { - JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, - "types and scales must match size", NULL); + JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, "types and scales must match size", NULL); } std::vector types_vec; - std::transform(n_types.begin(), n_types.end(), n_scale.begin(), - std::back_inserter(types_vec), [](jint type, jint scale) { - return cudf::jni::make_data_type(type, scale); - }); + std::transform(n_types.begin(), + n_types.end(), + n_scale.begin(), + std::back_inserter(types_vec), + [](jint type, jint scale) { return cudf::jni::make_data_type(type, scale); }); std::unique_ptr result = - cudf::convert_from_rows_fixed_width_optimized(list_input, types_vec); + cudf::convert_from_rows_fixed_width_optimized(list_input, types_vec); return cudf::jni::convert_table_for_return(env, result); } CATCH_STD(env, 0); } -JNIEXPORT jlongArray JNICALL -Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRows( - JNIEnv *env, jclass, jlong input_column, jintArray types, jintArray scale) { +JNIEXPORT jlongArray JNICALL Java_com_nvidia_spark_rapids_jni_RowConversion_convertFromRows( + JNIEnv* env, jclass, jlong input_column, jintArray types, jintArray scale) +{ JNI_NULL_CHECK(env, input_column, "input column is null", 0); JNI_NULL_CHECK(env, types, "types is null", 0); try { cudf::jni::auto_set_device(env); - cudf::lists_column_view const list_input{ - *reinterpret_cast(input_column)}; + cudf::lists_column_view const list_input{*reinterpret_cast(input_column)}; cudf::jni::native_jintArray n_types(env, types); cudf::jni::native_jintArray n_scale(env, scale); if (n_types.size() != n_scale.size()) { - JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, - "types and scales must match size", NULL); + JNI_THROW_NEW(env, cudf::jni::ILLEGAL_ARG_CLASS, "types and scales must match size", NULL); } std::vector types_vec; - std::transform(n_types.begin(), n_types.end(), n_scale.begin(), - std::back_inserter(types_vec), [](jint type, jint scale) { - return cudf::jni::make_data_type(type, scale); - }); - std::unique_ptr result = - cudf::convert_from_rows(list_input, types_vec); + std::transform(n_types.begin(), + n_types.end(), + n_scale.begin(), + std::back_inserter(types_vec), + [](jint type, jint scale) { return cudf::jni::make_data_type(type, scale); }); + std::unique_ptr result = cudf::convert_from_rows(list_input, types_vec); return cudf::jni::convert_table_for_return(env, result); } CATCH_STD(env, 0); From d8b62d7ebe7f6eaa990e5f49e5312fb959cf20ef Mon Sep 17 00:00:00 2001 From: Nghia Truong Date: Wed, 20 Dec 2023 20:35:18 -0800 Subject: [PATCH 5/6] Update submodule manually Signed-off-by: Nghia Truong --- thirdparty/cudf | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/thirdparty/cudf b/thirdparty/cudf index 8b695e3403..36f56c97b9 160000 --- a/thirdparty/cudf +++ b/thirdparty/cudf @@ -1 +1 @@ -Subproject commit 8b695e340355d43261800a1cff876369e916ae90 +Subproject commit 36f56c97b94446f29fef5d2ddd8818275a28e406 From ae3561ab378bec17fe916be5831a0dcfee174e17 Mon Sep 17 00:00:00 2001 From: Nghia Truong Date: Wed, 20 Dec 2023 21:51:02 -0800 Subject: [PATCH 6/6] Fix header Signed-off-by: Nghia Truong --- src/main/cpp/src/RowConversionJni.cpp | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/main/cpp/src/RowConversionJni.cpp b/src/main/cpp/src/RowConversionJni.cpp index 89e104426a..8e900691f1 100644 --- a/src/main/cpp/src/RowConversionJni.cpp +++ b/src/main/cpp/src/RowConversionJni.cpp @@ -16,7 +16,8 @@ #include "cudf_jni_apis.hpp" #include "dtype_utils.hpp" -#include "row_conversion.hpp" + +#include extern "C" {