-
Notifications
You must be signed in to change notification settings - Fork 28
/
nds_transcode.py
315 lines (291 loc) · 13.2 KB
/
nds_transcode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
#
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# -----
#
# Certain portions of the contents of this file are derived from TPC-DS version 3.2.0
# (retrieved from www.tpc.org/tpc_documents_current_versions/current_specifications5.asp).
# Such portions are subject to copyrights held by Transaction Processing Performance Council (“TPC”)
# and licensed under the TPC EULA (a copy of which accompanies this file as “TPC EULA” and is also
# available at http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp) (the “TPC EULA”).
#
# You may not use this file except in compliance with the TPC EULA.
# DISCLAIMER: Portions of this file is derived from the TPC-DS Benchmark and as such any results
# obtained using this file are not comparable to published TPC-DS Benchmark results, as the results
# obtained from using this file do not comply with the TPC-DS Benchmark.
#
import argparse
import timeit
import pyspark
import os
from datetime import datetime
from pyspark.sql.types import *
from pyspark.sql.functions import col
from nds_schema import *
# Note the specific partitioning is applied when save the parquet data files.
TABLE_PARTITIONING = {
'catalog_sales': 'cs_sold_date_sk',
'catalog_returns': 'cr_returned_date_sk',
'inventory': 'inv_date_sk',
'store_sales': 'ss_sold_date_sk',
'store_returns': 'sr_returned_date_sk',
'web_sales': 'ws_sold_date_sk',
'web_returns': 'wr_returned_date_sk'
}
def load(session, filename, schema, input_format, delimiter="|", header="false", prefix=""):
data_path = prefix + '/' + filename
if input_format == 'csv':
return session.read.option("delimiter", delimiter).option("header", header)\
.option("encoding", "ISO-8859-1").csv(data_path, schema=schema)
elif input_format in ['parquet', 'orc', 'avro', 'json']:
return session.read.format(input_format).load(data_path)
# TODO: all of the output formats should be also supported as input format possibilities
# remains 'iceberg', 'delta'
else:
raise ValueError("Unsupported input format: {}".format(input_format))
def store(session,
df,
filename,
output_format,
output_mode,
iceberg_write_format,
compression,
prefix="",
delta_unmanaged=False,
hive_external=False):
"""Create Iceberg tables by CTAS
Args:
session (SparkSession): a working SparkSession instance
df (DataFrame): DataFrame to be serialized into Iceberg table
filename (str): name of the table(file)
output_format (str): parquet, orc or avro
output_mode (str): save modes as defined by "https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html#save-modes.
iceberg_write_format (bool): write data into Iceberg tables with specified format
compression (str): compression codec for converted data when saving to disk
prefix (str): output data path when not using Iceberg.
"""
if output_format == "iceberg":
if output_mode == 'overwrite':
session.sql(f"drop table if exists {filename}")
CTAS = f"create table {filename} using iceberg "
if filename in TABLE_PARTITIONING.keys():
df.repartition(
col(TABLE_PARTITIONING[filename])).sortWithinPartitions(
TABLE_PARTITIONING[filename]).createOrReplaceTempView("temptbl")
CTAS += f"partitioned by ({TABLE_PARTITIONING[filename]})"
else:
df.coalesce(1).createOrReplaceTempView("temptbl")
CTAS += f" tblproperties('write.format.default' = '{iceberg_write_format}'"
# Iceberg now only support compression codec option for Parquet and Avro write.
if compression:
if iceberg_write_format == "parquet":
CTAS += f", 'write.parquet.compression-codec' = '{compression}'"
elif iceberg_write_format == "avro":
CTAS += f", 'write.avro.compression-codec' = '{compression}'"
CTAS += ")"
CTAS += " as select * from temptbl"
session.sql(CTAS)
elif output_format == "delta" and not delta_unmanaged:
if output_mode == 'overwrite':
session.sql(f"drop table if exists {filename}")
CTAS = f"create table {filename} using delta "
if filename in TABLE_PARTITIONING.keys():
df.repartition(
col(TABLE_PARTITIONING[filename])).sortWithinPartitions(
TABLE_PARTITIONING[filename]).createOrReplaceTempView("temptbl")
CTAS += f"partitioned by ({TABLE_PARTITIONING[filename]})"
else:
df.coalesce(1).createOrReplaceTempView("temptbl")
# Delta Lake doesn't have specific compression properties, set it by `spark.sql.parquet.compression.codec`
# Note Delta Lake only support Parquet.
if compression:
session.conf.set("spark.sql.parquet.compression.codec", compression)
CTAS += " as select * from temptbl"
session.sql(CTAS)
else:
data_path = prefix + '/' + filename
if filename in TABLE_PARTITIONING.keys():
df = df.repartition(
col(TABLE_PARTITIONING[filename])).sortWithinPartitions(
TABLE_PARTITIONING[filename])
writer = df.write
if compression:
writer = writer.option('compression', compression)
writer = writer.format(output_format).mode(
output_mode).partitionBy(TABLE_PARTITIONING[filename])
if not hive_external:
writer.save(data_path)
else:
writer.saveAsTable(filename, path=data_path)
else:
writer = df.coalesce(1).write
if compression:
writer = writer.option('compression', compression)
writer = writer.format(output_format).mode(output_mode)
if not hive_external:
writer.save(data_path)
else:
writer.saveAsTable(filename, path=data_path)
def transcode(args):
session_builder = pyspark.sql.SparkSession.builder
if args.output_format == "iceberg":
session_builder.config("spark.sql.catalog.spark_catalog.warehouse", args.output_prefix)
if args.output_format == "delta" and not args.delta_unmanaged:
session_builder.config("spark.sql.warehouse.dir", args.output_prefix)
session_builder.config("spark.sql.catalogImplementation", "hive")
if args.hive:
session_builder.enableHiveSupport()
session = session_builder.appName(f"NDS - transcode - {args.output_format}").getOrCreate()
if args.hive:
session.sql(f"CREATE DATABASE IF NOT EXISTS {args.database}")
session.catalog.setCurrentDatabase(args.database)
session.sparkContext.setLogLevel(args.log_level)
results = {}
schemas = get_schemas(use_decimal=not args.floats)
maintenance_schemas = get_maintenance_schemas(use_decimal=not args.floats)
if args.update:
trans_tables = maintenance_schemas
else:
trans_tables = schemas
if args.tables:
for t in args.tables:
if t not in trans_tables.keys() :
raise Exception(f"invalid table name: {t}. Valid tables are: {schemas.keys()}")
trans_tables = {t: trans_tables[t] for t in args.tables if t in trans_tables}
start_time = datetime.now()
print(f"Load Test Start Time: {start_time}")
for fn, schema in trans_tables.items():
results[fn] = timeit.timeit(
lambda: store(session,
load(session,
f"{fn}",
schema,
input_format=args.input_format,
prefix=args.input_prefix),
f"{fn}",
args.output_format,
args.output_mode,
args.iceberg_write_format,
args.compression,
args.output_prefix,
args.delta_unmanaged,
args.hive),
number=1)
end_time = datetime.now()
delta = (end_time - start_time).total_seconds()
print(f"Load Test Finished at: {end_time}")
print(f"Load Test Time: {delta} seconds")
# format required at TPC-DS Spec 4.3.1
end_time_formatted = end_time.strftime("%m%d%H%M%S%f")[:-5]
print(f"RNGSEED used :{end_time_formatted}")
report_text = ""
report_text += f"Load Test Time: {delta} seconds\n"
report_text += f"Load Test Finished at: {end_time}\n"
report_text += f"RNGSEED used: {end_time_formatted}\n"
for table, duration in results.items():
report_text += "Time to convert '%s' was %.04fs\n" % (table, duration)
report_text += "\n\n\nSpark configuration follows:\n\n"
with open(args.report_file, "w") as report:
report.write(report_text)
print(report_text)
for conf in session.sparkContext.getConf().getAll():
report.write(str(conf) + "\n")
print(conf)
if __name__ == "__main__":
parser = parser = argparse.ArgumentParser()
parser.add_argument(
'input_prefix',
help='text to prepend to every input file path (e.g., "hdfs:///ds-generated-data"; the default is empty)')
parser.add_argument(
'output_prefix',
help='text to prepend to every output file (e.g., "hdfs:///ds-parquet"; the default is empty)' +
'. If output_format is "iceberg", this argument will be regarded as the value of property ' +
'"spark.sql.catalog.spark_catalog.warehouse". Only default Spark catalog ' +
'session name "spark_catalog" is supported now, customized catalog is not ' +
'yet supported.')
parser.add_argument(
'report_file',
help='location to store a performance report(local)')
parser.add_argument(
'--output_mode',
choices=['overwrite', 'append', 'ignore', 'error', 'errorifexists'],
help="save modes as defined by " +
"https://spark.apache.org/docs/latest/sql-data-sources-load-save-functions.html#save-modes." +
"default value is errorifexists, which is the Spark default behavior.",
default="errorifexists")
parser.add_argument(
'--input_format',
choices=['csv', 'parquet', 'orc', 'avro', 'json'],
default='csv',
help='input data format to be converted. default value is csv.'
)
parser.add_argument(
'--output_format',
choices=['parquet', 'orc', 'avro', 'json', 'iceberg', 'delta'],
default='parquet',
help="output data format when converting CSV data sources."
)
parser.add_argument(
'--tables',
type=lambda s: s.split(','),
help="specify table names by a comma separated string. e.g. 'catalog_page,catalog_sales'.")
parser.add_argument(
'--log_level',
help='set log level for Spark driver log. Valid log levels include: ALL, DEBUG, ERROR, FATAL, INFO, OFF, TRACE, WARN(default: INFO)',
default="INFO")
parser.add_argument(
'--floats',
action='store_true',
help='replace DecimalType with DoubleType when saving parquet files. If not specified, decimal data will be saved.')
parser.add_argument(
'--update',
action='store_true',
help='transcode the source data or update data'
)
parser.add_argument(
'--iceberg_write_format',
choices=['parquet', 'orc', 'avro'],
default='parquet',
help='File format for the Iceberg table; parquet, avro, or orc'
)
parser.add_argument(
'--compression',
help='Compression codec to use when saving data.' +
' See https://iceberg.apache.org/docs/latest/configuration/#write-properties ' +
' for supported codecs in Iceberg.' +
' See https://spark.apache.org/docs/latest/sql-data-sources.html' +
' for supported codecs for Spark built-in formats.' +
' When not specified, the default for the requested output format will be used.'
)
parser.add_argument(
'--delta_unmanaged',
action='store_true',
help='Use unmanaged tables for DeltaLake. This is useful for testing DeltaLake without ' +
'leveraging a Metastore service.')
parser.add_argument(
'--hive',
action='store_true',
help='create Hive external tables for the converted data.'
)
parser.add_argument(
'--database',
help='the name of a database to use instead of `default`, currently applies only to Hive',
default="default"
)
args = parser.parse_args()
transcode(args)