Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 2.07 KB

2407.09473.md

File metadata and controls

5 lines (3 loc) · 2.07 KB

StyleSplat: 3D Object Style Transfer with Gaussian Splatting

Recent advancements in radiance fields have opened new avenues for creating high-quality 3D assets and scenes. Style transfer can enhance these 3D assets with diverse artistic styles, transforming creative expression. However, existing techniques are often slow or unable to localize style transfer to specific objects. We introduce StyleSplat, a lightweight method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images. Our approach first learns a photorealistic representation of the scene using 3D Gaussian splatting while jointly segmenting individual 3D objects. We then use a nearest-neighbor feature matching loss to finetune the Gaussians of the selected objects, aligning their spherical harmonic coefficients with the style image to ensure consistency and visual appeal. StyleSplat allows for quick, customizable style transfer and localized stylization of multiple objects within a scene, each with a different style. We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.

最近在辐射场的进展为创建高质量的3D资产和场景开辟了新途径。风格迁移可以通过多样化的艺术风格增强这些3D资产,从而转变创造性表达。然而,现有技术通常速度慢或无法将风格迁移定位到特定对象。我们介绍了一种名为StyleSplat的轻量级方法,用于在由参考风格图像的3D高斯表示的场景中对3D对象进行风格化。我们的方法首先使用3D高斯喷溅技术学习场景的真实感表示,同时对各个3D对象进行分割。然后,我们使用最近邻特征匹配损失来微调所选对象的高斯,将它们的球谐系数与风格图像对齐,以确保一致性和视觉吸引力。StyleSplat允许快速、可定制的风格迁移和场景中多个对象的局部风格化,每个对象都具有不同的风格。我们展示了其在各种3D场景和风格中的有效性,展示了在3D创作中对控制和定制的增强。