Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 2.34 KB

2406.18533.md

File metadata and controls

5 lines (3 loc) · 2.34 KB

On Scaling Up 3D Gaussian Splatting Training

3D Gaussian Splatting (3DGS) is increasingly popular for 3D reconstruction due to its superior visual quality and rendering speed. However, 3DGS training currently occurs on a single GPU, limiting its ability to handle high-resolution and large-scale 3D reconstruction tasks due to memory constraints. We introduce Grendel, a distributed system designed to partition 3DGS parameters and parallelize computation across multiple GPUs. As each Gaussian affects a small, dynamic subset of rendered pixels, Grendel employs sparse all-to-all communication to transfer the necessary Gaussians to pixel partitions and performs dynamic load balancing. Unlike existing 3DGS systems that train using one camera view image at a time, Grendel supports batched training with multiple views. We explore various optimization hyperparameter scaling strategies and find that a simple sqrt(batch size) scaling rule is highly effective. Evaluations using large-scale, high-resolution scenes show that Grendel enhances rendering quality by scaling up 3DGS parameters across multiple GPUs. On the Rubble dataset, we achieve a test PSNR of 27.28 by distributing 40.4 million Gaussians across 16 GPUs, compared to a PSNR of 26.28 using 11.2 million Gaussians on a single GPU.

3D高斯散射(3DGS)由于其卓越的视觉质量和渲染速度,越来越受到3D重建的青睐。然而,目前3DGS的训练仅在单个GPU上进行,由于内存限制,这限制了其处理高分辨率和大规模3D重建任务的能力。我们引入了Grendel,这是一个分布式系统,旨在将3DGS参数进行分区并跨多个GPU并行计算。由于每个高斯只影响一小部分动态变化的渲染像素,Grendel采用稀疏全互联通信来传输必要的高斯到像素分区,并执行动态负载平衡。与现有的3DGS系统不同,这些系统一次只训练一个相机视图图像,Grendel支持使用多个视图的批量训练。我们探索了各种优化超参数缩放策略,并发现简单的sqrt(批量大小)缩放规则非常有效。在使用大规模高分辨率场景的评估中显示,Grendel通过在多个GPU上扩展3DGS参数,提高了渲染质量。在Rubble数据集上,我们通过在16个GPU上分布4040万个高斯达到了27.28的测试PSNR,相比之下,在单个GPU上使用1120万个高斯的PSNR为26.28。