diff --git a/docs/sphinx/source/api.rst b/docs/sphinx/source/api.rst index 86520dbd..07f610fa 100644 --- a/docs/sphinx/source/api.rst +++ b/docs/sphinx/source/api.rst @@ -111,6 +111,11 @@ Filtering poa_filter tcell_filter normalized_filter + two_way_window_filter + insolation_filter + hampel_filter + directional_tukey_filter + hour_angle_filter Normalization diff --git a/rdtools/analysis_chains.py b/rdtools/analysis_chains.py index 99c913c4..ce08c137 100644 --- a/rdtools/analysis_chains.py +++ b/rdtools/analysis_chains.py @@ -79,7 +79,8 @@ class TrendAnalysis: filter_params_aggregated: dict parameters to be passed to rdtools.filtering functions that specifically handle aggregated data (dily filters, etc). Keys are the names of the rdtools.filtering functions. - Values are dicts of parameters to be passed to those functions. Also has a special key + Values are dicts of parameters to be passed to those functions. To invoke `clearsky_filter` + for a sensor analysis, use the special key `sensor_clearsky_filter`. Also has a special key `ad_hoc_filter`; this filter is a boolean mask joined with the rest of the filters. filter_params_aggregated defaults to empty dicts for each function in rdtools.filtering, in which case those functions use default parameter values, `ad_hoc_filter` diff --git a/rdtools/filtering.py b/rdtools/filtering.py index 4678ff1d..5c3443ba 100644 --- a/rdtools/filtering.py +++ b/rdtools/filtering.py @@ -178,7 +178,7 @@ def pvlib_clearsky_filter( **kwargs, ): """ - Filtering based on the Reno and Hansen method for clearsky filtering + Filtering based on the Reno and Hansen method for clear-sky filtering as implimented in pvlib. Requires a regular time series with uniform time steps. @@ -794,9 +794,8 @@ def _calculate_xgboost_model_features(df, sampling_frequency): def xgboost_clip_filter(power_ac, mounting_type="fixed"): """ - This function generates the features to run through the XGBoost - clipping model, runs the data through the model, and generates - model outputs. + This filter uses and XGBoost model to filter out + clipping periods in AC power or energy time series. Parameters ---------- @@ -948,7 +947,7 @@ def two_way_window_filter( series, roll_period=pd.to_timedelta("7 Days"), outlier_threshold=0.03 ): """ - Removes outliers based on forward and backward window of the rolling median. Points beyond + Removes anomalies based on forward and backward window of the rolling median. Points beyond outlier_threshold from both the forward and backward-looking median are excluded by the filter. Parameters @@ -959,6 +958,11 @@ def two_way_window_filter( The window to use for backward and forward rolling medians for detecting outliers. outlier_threshold : default is 0.03 meaning 3% + + Returns + ------- + pandas.Series + Boolean Series excluding anomalies """ series = series / series.quantile(0.99) @@ -984,9 +988,20 @@ def two_way_window_filter( def insolation_filter(insolation, quantile=0.1): """ - TODO: figure out if this should be more general + A simple quantile filter. Primary application in RdTools is to exclude + low insolation points after the aggregation step. - returns a filter that excludes everything below quantile from insolation + Parameters + ---------- + insolation: pandas.Series + Pandas time series to be filtered. Usually insolation. + quantile : float, default 0.1 + the minimum quantile above which data is kept. + + Returns + ------- + pandas.Series + Boolean Series excluding points below the quantile threshold """ limit = insolation.quantile(quantile) @@ -994,13 +1009,14 @@ def insolation_filter(insolation, quantile=0.1): return mask -def hampel_filter(vals, k="14d", t0=3): +def hampel_filter(series, k="14d", t0=3): """ - Hampel outlier filter primarily applied on daily normalized data but broadly + Hampel outlier filter primarily applied after aggregation step, but broadly applicable. + Parameters ---------- - vals : pandas.Series + series : pandas.Series daily normalized time series k : int or time offset string e.g. 'd', default 14d size of window including the sample; 14d is equal to 7 days on either @@ -1010,13 +1026,13 @@ def hampel_filter(vals, k="14d", t0=3): Returns ------- pandas.Series - Boolean Series of whether the given measurement is within 3 sigma of the - median. False points indicate outliers to be removed. + Boolean Series of whether the given measurement is within t0 sigma of the + rolling median. False points indicate outliers to be excluded. """ # Hampel Filter L = 1.4826 - rolling_median = vals.rolling(k, center=True, min_periods=1).median() - difference = np.abs(rolling_median - vals) + rolling_median = series.rolling(k, center=True, min_periods=1).median() + difference = np.abs(rolling_median - series) median_abs_deviation = difference.rolling(k, center=True, min_periods=1).median() threshold = t0 * L * median_abs_deviation return difference <= threshold @@ -1034,9 +1050,28 @@ def _tukey_fence(series, k=1.5): def directional_tukey_filter(series, roll_period=pd.to_timedelta("7 Days"), k=1.5): """ - Performs a forward and backward looking rolling tukey filter. Points must only - pass one of either the forward or backward looking filters to be kept + Performs a forward and backward looking rolling Tukey filter. Points more than k*IQR + above the third quartile or below the first quartile are classified as outliers.Points + must only pass one of either the forward or backward looking filters to be kept. + + + Parameters + ---------- + series: pandas.Series + Pandas time series to be filtered. + roll_period : int or timedelta, default 7 days + The window to use for backward and forward + rolling medians for detecting outliers. + k : float + The Tukey parameter. Points more than k*IQR above the third quartile + or below the first quartile are classified as outliers. + + Returns + ------- + pandas.Series + Boolean Series excluding anomalies """ + backward_median = series.rolling(roll_period, min_periods=5, closed="both").median() forward_median = ( series.loc[::-1].rolling(roll_period, min_periods=5, closed="both").median() @@ -1056,6 +1091,26 @@ def directional_tukey_filter(series, roll_period=pd.to_timedelta("7 Days"), k=1. def hour_angle_filter(series, lat, lon, min_hour_angle=-30, max_hour_angle=30): """ Creates a filter based on the hour angle of the sun (15 degrees per hour) + + Parameters + ---------- + series: pandas.Series + Pandas time series to be filtered + lat: float + location latitude + lon: float + location longitude + min_hour_angle: float + minimum hour angle to include + max_hour_angle: float + maximum hour angle to include + + Returns + ------- + pandas.Series + Boolean Series excluding points outside the specified hour + angle range + """ times = series.index