From 35a3ec991f360a805f5489444434218828ee74c8 Mon Sep 17 00:00:00 2001 From: nmoyer Date: Fri, 2 Aug 2024 12:51:05 -0600 Subject: [PATCH] formatting conftest.py and soiling_test.py --- rdtools/test/conftest.py | 118 +++-- rdtools/test/soiling_test.py | 999 ++++++++++++++++++++++++----------- 2 files changed, 751 insertions(+), 366 deletions(-) diff --git a/rdtools/test/conftest.py b/rdtools/test/conftest.py index 7318d91d..72de0246 100644 --- a/rdtools/test/conftest.py +++ b/rdtools/test/conftest.py @@ -9,8 +9,7 @@ import rdtools -rdtools_base_version = \ - parse_version(parse_version(rdtools.__version__).base_version) +rdtools_base_version = parse_version(parse_version(rdtools.__version__).base_version) # decorator takes one argument: the base version for which it should fail @@ -26,17 +25,20 @@ def wrapper(func): def inner(*args, **kwargs): # fail if the version is too high if rdtools_base_version >= parse_version(version): - pytest.fail('the tested function is scheduled to be ' - 'removed in %s' % version) + pytest.fail( + "the tested function is scheduled to be " "removed in %s" % version + ) # otherwise return the function to be executed else: return func(*args, **kwargs) + return inner + return wrapper def assert_isinstance(obj, klass): - assert isinstance(obj, klass), f'got {type(obj)}, expected {klass}' + assert isinstance(obj, klass), f"got {type(obj)}, expected {klass}" def assert_warnings(messages, record): @@ -58,17 +60,19 @@ def assert_warnings(messages, record): assert found_match, f"warning '{pattern}' not in {warning_messages}" -requires_pvlib_below_090 = \ - pytest.mark.skipif(parse_version(pvlib.__version__) > parse_version('0.8.1'), - reason='requires pvlib <= 0.8.1') +requires_pvlib_below_090 = pytest.mark.skipif( + parse_version(pvlib.__version__) > parse_version("0.8.1"), + reason="requires pvlib <= 0.8.1", +) # %% Soiling fixtures + @pytest.fixture() def soiling_times(): - tz = 'Etc/GMT+7' - times = pd.date_range('2019/01/01', '2019/03/16', freq='D', tz=tz) + tz = "Etc/GMT+7" + times = pd.date_range("2019/01/01", "2019/03/16", freq="D", tz=tz) return times @@ -85,6 +89,7 @@ def soiling_normalized_daily(soiling_times): return normalized_daily + @pytest.fixture() def soiling_normalized_daily_with_neg_shifts(soiling_times): interval_1_v1 = 1 - 0.005 * np.arange(0, 15, 1) @@ -92,7 +97,9 @@ def soiling_normalized_daily_with_neg_shifts(soiling_times): interval_2 = 1 - 0.002 * np.arange(0, 25, 1) interval_3_v1 = 1 - 0.001 * np.arange(0, 10, 1) interval_3_v2 = (0.95 - 0.001 * 10) - 0.001 * np.arange(0, 15, 1) - profile = np.concatenate((interval_1_v1, interval_1_v2, interval_2, interval_3_v1, interval_3_v2)) + profile = np.concatenate( + (interval_1_v1, interval_1_v2, interval_2, interval_3_v1, interval_3_v2) + ) np.random.seed(1977) noise = 0.01 * np.random.rand(75) normalized_daily = pd.Series(data=profile, index=soiling_times) @@ -100,13 +107,16 @@ def soiling_normalized_daily_with_neg_shifts(soiling_times): return normalized_daily + @pytest.fixture() def soiling_normalized_daily_with_piecewise_slope(soiling_times): interval_1_v1 = 1 - 0.002 * np.arange(0, 20, 1) interval_1_v2 = (1 - 0.002 * 20) - 0.007 * np.arange(0, 20, 1) interval_2_v1 = 1 - 0.01 * np.arange(0, 20, 1) interval_2_v2 = (1 - 0.01 * 20) - 0.001 * np.arange(0, 15, 1) - profile = np.concatenate((interval_1_v1, interval_1_v2, interval_2_v1, interval_2_v2)) + profile = np.concatenate( + (interval_1_v1, interval_1_v2, interval_2_v1, interval_2_v2) + ) np.random.seed(1977) noise = 0.01 * np.random.rand(75) normalized_daily = pd.Series(data=profile, index=soiling_times) @@ -114,6 +124,7 @@ def soiling_normalized_daily_with_piecewise_slope(soiling_times): return normalized_daily + @pytest.fixture() def soiling_insolation(soiling_times): insolation = np.empty((75,)) @@ -128,8 +139,8 @@ def soiling_insolation(soiling_times): @pytest.fixture() def cods_times(): - tz = 'Etc/GMT+7' - cods_times = pd.date_range('2019/01/01', '2021/01/01', freq='D', tz=tz) + tz = "Etc/GMT+7" + cods_times = pd.date_range("2019/01/01", "2021/01/01", freq="D", tz=tz) return cods_times @@ -141,7 +152,9 @@ def cods_normalized_daily_wo_noise(cods_times): interval_3 = 1 - 0.001 * np.arange(0, 25, 1) profile = np.concatenate((interval_1, interval_2, interval_3)) repeated_profile = np.concatenate([profile for _ in range(int(np.ceil(N / 75)))]) - cods_normalized_daily_wo_noise = pd.Series(data=repeated_profile[:N], index=cods_times) + cods_normalized_daily_wo_noise = pd.Series( + data=repeated_profile[:N], index=cods_times + ) return cods_normalized_daily_wo_noise @@ -159,18 +172,21 @@ def cods_normalized_daily_small_soiling(cods_normalized_daily_wo_noise): N = len(cods_normalized_daily_wo_noise) np.random.seed(1977) noise = 1 + 0.02 * (np.random.rand(N) - 0.5) - cods_normalized_daily_small_soiling = cods_normalized_daily_wo_noise.apply( - lambda row: 1-(1-row)*0.1) * noise + cods_normalized_daily_small_soiling = ( + cods_normalized_daily_wo_noise.apply(lambda row: 1 - (1 - row) * 0.1) * noise + ) return cods_normalized_daily_small_soiling # %% Availability fixtures -ENERGY_PARAMETER_SPACE = list(itertools.product( - [0, np.nan], # outage value for power - [0, np.nan, None], # value for cumulative energy (None means real value) - [0, 0.25, 0.5, 0.75, 1.0], # fraction of comms outage that is power outage -)) +ENERGY_PARAMETER_SPACE = list( + itertools.product( + [0, np.nan], # outage value for power + [0, np.nan, None], # value for cumulative energy (None means real value) + [0, 0.25, 0.5, 0.75, 1.0], # fraction of comms outage that is power outage + ) +) # display names for the test cases. default is just 0..N ENERGY_PARAMETER_IDS = ["_".join(map(str, p)) for p in ENERGY_PARAMETER_SPACE] @@ -180,20 +196,23 @@ def _generate_energy_data(power_value, energy_value, outage_fraction): Generate an artificial mixed communication/power outage. """ # a few days of clearsky irradiance for creating a plausible power signal - times = pd.date_range('2019-01-01', '2019-01-15 23:59', freq='15min', - tz='US/Eastern') + times = pd.date_range( + "2019-01-01", "2019-01-15 23:59", freq="15min", tz="US/Eastern" + ) location = pvlib.location.Location(40, -80) # use haurwitz to avoid dependency on `tables` - clearsky = location.get_clearsky(times, model='haurwitz') + clearsky = location.get_clearsky(times, model="haurwitz") # just set base inverter power = ghi+clipping for simplicity - base_power = clearsky['ghi'].clip(upper=0.8*clearsky['ghi'].max()) - - inverter_power = pd.DataFrame({ - 'inv0': base_power, - 'inv1': base_power*0.7, - 'inv2': base_power*1.3, - }) + base_power = clearsky["ghi"].clip(upper=0.8 * clearsky["ghi"].max()) + + inverter_power = pd.DataFrame( + { + "inv0": base_power, + "inv1": base_power * 0.7, + "inv2": base_power * 1.3, + } + ) expected_power = inverter_power.sum(axis=1) # dawn/dusk points expected_power[expected_power < 10] = 0 @@ -202,10 +221,10 @@ def _generate_energy_data(power_value, energy_value, outage_fraction): expected_power *= 1.05 + np.random.normal(0, scale=0.05, size=len(times)) # calculate what part of the comms outage is a power outage - comms_outage = slice('2019-01-03 00:00', '2019-01-06 00:00') + comms_outage = slice("2019-01-03 00:00", "2019-01-06 00:00") start = times.get_loc(comms_outage.start) stop = times.get_loc(comms_outage.stop) - power_outage = slice(start, int(start + outage_fraction * (stop-start))) + power_outage = slice(start, int(start + outage_fraction * (stop - start))) expected_loss = inverter_power.iloc[power_outage, :].sum().sum() / 4 inverter_power.iloc[power_outage, :] = 0 meter_power = inverter_power.sum(axis=1) @@ -219,14 +238,16 @@ def _generate_energy_data(power_value, energy_value, outage_fraction): meter_energy[comms_outage] = energy_value inverter_power.loc[comms_outage, :] = power_value - expected_type = 'real' if outage_fraction > 0 else 'comms' + expected_type = "real" if outage_fraction > 0 else "comms" - return (meter_power, - meter_energy, - inverter_power, - expected_power, - expected_loss, - expected_type) + return ( + meter_power, + meter_energy, + inverter_power, + expected_power, + expected_loss, + expected_type, + ) @pytest.fixture(params=ENERGY_PARAMETER_SPACE, ids=ENERGY_PARAMETER_IDS) @@ -254,13 +275,12 @@ def energy_data_comms_single(): @pytest.fixture def availability_analysis_object(energy_data_outage_single): - (meter_power, - meter_energy, - inverter_power, - expected_power, - _, _) = energy_data_outage_single - - aa = rdtools.availability.AvailabilityAnalysis(meter_power, inverter_power, meter_energy, - expected_power) + (meter_power, meter_energy, inverter_power, expected_power, _, _) = ( + energy_data_outage_single + ) + + aa = rdtools.availability.AvailabilityAnalysis( + meter_power, inverter_power, meter_energy, expected_power + ) aa.run() return aa diff --git a/rdtools/test/soiling_test.py b/rdtools/test/soiling_test.py index 4ae6c6b9..20691e45 100644 --- a/rdtools/test/soiling_test.py +++ b/rdtools/test/soiling_test.py @@ -12,189 +12,297 @@ def test_soiling_srr(soiling_normalized_daily, soiling_insolation, soiling_times reps = 10 np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, reps=reps) - assert 0.964369 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected value' - assert np.array([0.962540, 0.965295]) == pytest.approx(sr_ci, abs=1e-6), \ - 'Confidence interval different from expected value' - assert 0.960205 == pytest.approx(soiling_info['exceedance_level'], abs=1e-6), \ - 'Exceedance level different from expected value' - assert 0.984079 == pytest.approx(soiling_info['renormalizing_factor'], abs=1e-6), \ - 'Renormalizing factor different from expected value' - assert len(soiling_info['stochastic_soiling_profiles']) == reps, \ - 'Length of soiling_info["stochastic_soiling_profiles"] different than expected' - assert isinstance(soiling_info['stochastic_soiling_profiles'], list), \ - 'soiling_info["stochastic_soiling_profiles"] is not a list' - #wait to see which tests matt wants to keep - #assert len(soiling_info['change_points']) == len(soiling_normalized_daily), \ - # 'length of soiling_info["change_points"] different than expected' - #assert isinstance(soiling_info['change_points'], pd.Series), \ - # 'soiling_info["change_points"] not a pandas series' - #assert (soiling_info['change_points'] == False).all(), \ - # 'not all values in soiling_inf["change_points"] are False' - #assert len(soiling_info['days_since_clean']) == len(soiling_normalized_daily), \ - # 'length of soiling_info["days_since_clean"] different than expected' - #assert isinstance(soiling_info['days_since_clean'], pd.Series), \ - # 'soiling_info["days_since_clean"] not a pandas series' - + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, soiling_insolation, reps=reps + ) + assert 0.964369 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected value" + assert np.array([0.962540, 0.965295]) == pytest.approx( + sr_ci, abs=1e-6 + ), "Confidence interval different from expected value" + assert 0.960205 == pytest.approx( + soiling_info["exceedance_level"], abs=1e-6 + ), "Exceedance level different from expected value" + assert 0.984079 == pytest.approx( + soiling_info["renormalizing_factor"], abs=1e-6 + ), "Renormalizing factor different from expected value" + assert ( + len(soiling_info["stochastic_soiling_profiles"]) == reps + ), 'Length of soiling_info["stochastic_soiling_profiles"] different than expected' + assert isinstance( + soiling_info["stochastic_soiling_profiles"], list + ), 'soiling_info["stochastic_soiling_profiles"] is not a list' + # wait to see which tests matt wants to keep + # assert len(soiling_info['change_points']) == len(soiling_normalized_daily), \ + # 'length of soiling_info["change_points"] different than expected' + # assert isinstance(soiling_info['change_points'], pd.Series), \ + # 'soiling_info["change_points"] not a pandas series' + # assert (soiling_info['change_points'] == False).all(), \ + # 'not all values in soiling_inf["change_points"] are False' + # assert len(soiling_info['days_since_clean']) == len(soiling_normalized_daily), \ + # 'length of soiling_info["days_since_clean"] different than expected' + # assert isinstance(soiling_info['days_since_clean'], pd.Series), \ + # 'soiling_info["days_since_clean"] not a pandas series' # Check soiling_info['soiling_interval_summary'] - expected_summary_columns = ['start', 'end', 'soiling_rate', 'soiling_rate_low', - 'soiling_rate_high', 'inferred_start_loss', 'inferred_end_loss','inferred_recovery','inferred_begin_shift', - 'length', 'valid'] - actual_summary_columns = soiling_info['soiling_interval_summary'].columns.values + expected_summary_columns = [ + "start", + "end", + "soiling_rate", + "soiling_rate_low", + "soiling_rate_high", + "inferred_start_loss", + "inferred_end_loss", + "inferred_recovery", + "inferred_begin_shift", + "length", + "valid", + ] + actual_summary_columns = soiling_info["soiling_interval_summary"].columns.values for x in actual_summary_columns: - assert x in expected_summary_columns, \ - f"'{x}' not an expected column in soiling_info['soiling_interval_summary']" + assert ( + x in expected_summary_columns + ), f"'{x}' not an expected column in soiling_info['soiling_interval_summary']" for x in expected_summary_columns: - assert x in actual_summary_columns, \ - f"'{x}' was expected as a column, but not in soiling_info['soiling_interval_summary']" - assert isinstance(soiling_info['soiling_interval_summary'], pd.DataFrame), \ - 'soiling_info["soiling_interval_summary"] not a dataframe' - expected_means = pd.Series({'soiling_rate': -0.002644544, - 'soiling_rate_low': -0.002847504, - 'soiling_rate_high': -0.002455915, - 'inferred_start_loss': 1.020124, - 'inferred_end_loss': 0.9566552, - 'inferred_recovery': 0.065416, #Matt might not keep - 'inferred_begin_shift': 0.084814, #Matt might not keep - 'length': 24.0, - 'valid': 1.0}) - expected_means = expected_means[['soiling_rate', 'soiling_rate_low', 'soiling_rate_high', - 'inferred_start_loss', 'inferred_end_loss', 'inferred_recovery', 'inferred_begin_shift', - 'length', 'valid']] - actual_means = soiling_info['soiling_interval_summary'][expected_means.index].mean() + assert ( + x in actual_summary_columns + ), f"'{x}' was expected as a column, but not in soiling_info['soiling_interval_summary']" + assert isinstance( + soiling_info["soiling_interval_summary"], pd.DataFrame + ), 'soiling_info["soiling_interval_summary"] not a dataframe' + expected_means = pd.Series( + { + "soiling_rate": -0.002644544, + "soiling_rate_low": -0.002847504, + "soiling_rate_high": -0.002455915, + "inferred_start_loss": 1.020124, + "inferred_end_loss": 0.9566552, + "inferred_recovery": 0.065416, # Matt might not keep + "inferred_begin_shift": 0.084814, # Matt might not keep + "length": 24.0, + "valid": 1.0, + } + ) + expected_means = expected_means[ + [ + "soiling_rate", + "soiling_rate_low", + "soiling_rate_high", + "inferred_start_loss", + "inferred_end_loss", + "inferred_recovery", + "inferred_begin_shift", + "length", + "valid", + ] + ] + actual_means = soiling_info["soiling_interval_summary"][expected_means.index].mean() pd.testing.assert_series_equal(expected_means, actual_means, check_exact=False) # Check soiling_info['soiling_ratio_perfect_clean'] - pd.testing.assert_index_equal(soiling_info['soiling_ratio_perfect_clean'].index, soiling_times, - check_names=False) - sr_mean = soiling_info['soiling_ratio_perfect_clean'].mean() - assert 0.968265 == pytest.approx(sr_mean, abs=1e-6), \ - "The mean of soiling_info['soiling_ratio_perfect_clean'] differs from expected" - assert isinstance(soiling_info['soiling_ratio_perfect_clean'], pd.Series), \ - 'soiling_info["soiling_ratio_perfect_clean"] not a pandas series' + pd.testing.assert_index_equal( + soiling_info["soiling_ratio_perfect_clean"].index, + soiling_times, + check_names=False, + ) + sr_mean = soiling_info["soiling_ratio_perfect_clean"].mean() + assert 0.968265 == pytest.approx( + sr_mean, abs=1e-6 + ), "The mean of soiling_info['soiling_ratio_perfect_clean'] differs from expected" + assert isinstance( + soiling_info["soiling_ratio_perfect_clean"], pd.Series + ), 'soiling_info["soiling_ratio_perfect_clean"] not a pandas series' @pytest.mark.filterwarnings("ignore:.*20% or more of the daily data.*:UserWarning") -@pytest.mark.parametrize('method,neg_shift,piecewise,expected_sr', - [('random_clean', False, False, 0.936177), - ('half_norm_clean', False, False, 0.915093), - ('perfect_clean', False, False, 0.977116), - ('perfect_clean_complex', True, True, 0.977116), - ('inferred_clean_complex', True, True, 0.975805)]) -def test_soiling_srr_consecutive_invalid(soiling_normalized_daily, soiling_insolation, - soiling_times, method, neg_shift, piecewise, expected_sr): +@pytest.mark.parametrize( + "method,neg_shift,piecewise,expected_sr", + [ + ("random_clean", False, False, 0.936177), + ("half_norm_clean", False, False, 0.915093), + ("perfect_clean", False, False, 0.977116), + ("perfect_clean_complex", True, True, 0.977116), + ("inferred_clean_complex", True, True, 0.975805), + ], +) +def test_soiling_srr_consecutive_invalid( + soiling_normalized_daily, + soiling_insolation, + soiling_times, + method, + neg_shift, + piecewise, + expected_sr, +): reps = 10 np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, reps=reps, - max_relative_slope_error=20.0, method=method, piecewise=piecewise, neg_shift=neg_shift) - assert expected_sr == pytest.approx(sr, abs=1e-6), \ - f'Soiling ratio different from expected value for {method} with consecutive invalid intervals' # noqa: E501 - - -@pytest.mark.parametrize('clean_criterion,expected_sr', - [('precip_and_shift', 0.982546), - ('precip_or_shift', 0.973433), - ('precip', 0.976196), - ('shift', 0.964369)]) -def test_soiling_srr_with_precip(soiling_normalized_daily, soiling_insolation, soiling_times, - clean_criterion, expected_sr): + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, + soiling_insolation, + reps=reps, + max_relative_slope_error=20.0, + method=method, + piecewise=piecewise, + neg_shift=neg_shift, + ) + assert expected_sr == pytest.approx( + sr, abs=1e-6 + ), f"Soiling ratio different from expected value for {method} with consecutive invalid intervals" # noqa: E501 + + +@pytest.mark.parametrize( + "clean_criterion,expected_sr", + [ + ("precip_and_shift", 0.982546), + ("precip_or_shift", 0.973433), + ("precip", 0.976196), + ("shift", 0.964369), + ], +) +def test_soiling_srr_with_precip( + soiling_normalized_daily, + soiling_insolation, + soiling_times, + clean_criterion, + expected_sr, +): precip = pd.Series(index=soiling_times, data=0) - precip['2019-01-18 00:00:00-07:00'] = 1 - precip['2019-02-20 00:00:00-07:00'] = 1 + precip["2019-01-18 00:00:00-07:00"] = 1 + precip["2019-02-20 00:00:00-07:00"] = 1 - kwargs = { - 'reps': 10, - 'precipitation_daily': precip - } + kwargs = {"reps": 10, "precipitation_daily": precip} np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, - clean_criterion=clean_criterion, **kwargs) - assert expected_sr == pytest.approx(sr, abs=1e-6), \ - f"Soiling ratio with clean_criterion='{clean_criterion}' different from expected" + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, + soiling_insolation, + clean_criterion=clean_criterion, + **kwargs, + ) + assert expected_sr == pytest.approx( + sr, abs=1e-6 + ), f"Soiling ratio with clean_criterion='{clean_criterion}' different from expected" def test_soiling_srr_confidence_levels(soiling_normalized_daily, soiling_insolation): - 'Tests SRR with different confidence level settings from above' + "Tests SRR with different confidence level settings from above" np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, - confidence_level=95, reps=10, exceedance_prob=80.0) - assert np.array([0.959322, 0.966066]) == pytest.approx(sr_ci, abs=1e-6), \ - 'Confidence interval with confidence_level=95 different than expected' - assert 0.962691 == pytest.approx(soiling_info['exceedance_level'], abs=1e-6), \ - 'soiling_info["exceedance_level"] different than expected when exceedance_prob=80' + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, + soiling_insolation, + confidence_level=95, + reps=10, + exceedance_prob=80.0, + ) + assert np.array([0.959322, 0.966066]) == pytest.approx( + sr_ci, abs=1e-6 + ), "Confidence interval with confidence_level=95 different than expected" + assert 0.962691 == pytest.approx( + soiling_info["exceedance_level"], abs=1e-6 + ), 'soiling_info["exceedance_level"] different than expected when exceedance_prob=80' def test_soiling_srr_dayscale(soiling_normalized_daily, soiling_insolation): - 'Test that a long dayscale can prevent valid intervals from being found' + "Test that a long dayscale can prevent valid intervals from being found" with pytest.raises(NoValidIntervalError): np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, - confidence_level=68.2, reps=10, day_scale=91) + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, + soiling_insolation, + confidence_level=68.2, + reps=10, + day_scale=91, + ) def test_soiling_srr_clean_threshold(soiling_normalized_daily, soiling_insolation): - '''Test that clean test_soiling_srr_clean_threshold works with a float and - can cause no soiling intervals to be found''' + """Test that clean test_soiling_srr_clean_threshold works with a float and + can cause no soiling intervals to be found""" np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, reps=10, - clean_threshold=0.01) - assert 0.964369 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio with specified clean_threshold different from expected value' + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, soiling_insolation, reps=10, clean_threshold=0.01 + ) + assert 0.964369 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio with specified clean_threshold different from expected value" with pytest.raises(NoValidIntervalError): np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, - reps=10, clean_threshold=0.1) + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, soiling_insolation, reps=10, clean_threshold=0.1 + ) def test_soiling_srr_trim(soiling_normalized_daily, soiling_insolation): np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, reps=10, - trim=True) - - assert 0.978093 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio with trim=True different from expected value' - assert len(soiling_info['soiling_interval_summary']) == 1, \ - 'Wrong number of soiling intervals found with trim=True' - - -@pytest.mark.parametrize('method,expected_sr', - [('random_clean', 0.920444), - ('perfect_clean', 0.966912), - ('perfect_clean_complex', 0.966912), - ('inferred_clean_complex', 0.965565)]) -def test_soiling_srr_method(soiling_normalized_daily, soiling_insolation, method, expected_sr): + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, soiling_insolation, reps=10, trim=True + ) + + assert 0.978093 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio with trim=True different from expected value" + assert ( + len(soiling_info["soiling_interval_summary"]) == 1 + ), "Wrong number of soiling intervals found with trim=True" + + +@pytest.mark.parametrize( + "method,expected_sr", + [ + ("random_clean", 0.920444), + ("perfect_clean", 0.966912), + ("perfect_clean_complex", 0.966912), + ("inferred_clean_complex", 0.965565), + ], +) +def test_soiling_srr_method( + soiling_normalized_daily, soiling_insolation, method, expected_sr +): np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, reps=10, - method=method) - assert expected_sr == pytest.approx(sr, abs=1e-6), \ - f'Soiling ratio with method="{method}" different from expected value' + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, soiling_insolation, reps=10, method=method + ) + assert expected_sr == pytest.approx( + sr, abs=1e-6 + ), f'Soiling ratio with method="{method}" different from expected value' def test_soiling_srr_min_interval_length(soiling_normalized_daily, soiling_insolation): - 'Test that a long minimum interval length prevents finding shorter intervals' + "Test that a long minimum interval length prevents finding shorter intervals" with pytest.raises(NoValidIntervalError): np.random.seed(1977) # normalized_daily intervals are 25 days long, so min=26 should fail: - _ = soiling_srr(soiling_normalized_daily, soiling_insolation, confidence_level=68.2, - reps=10, min_interval_length=26) + _ = soiling_srr( + soiling_normalized_daily, + soiling_insolation, + confidence_level=68.2, + reps=10, + min_interval_length=26, + ) # but min=24 should be fine: - _ = soiling_srr(soiling_normalized_daily, soiling_insolation, confidence_level=68.2, - reps=10, min_interval_length=24) + _ = soiling_srr( + soiling_normalized_daily, + soiling_insolation, + confidence_level=68.2, + reps=10, + min_interval_length=24, + ) def test_soiling_srr_recenter_false(soiling_normalized_daily, soiling_insolation): np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, reps=10, - recenter=False) - assert 1 == soiling_info['renormalizing_factor'], \ - 'Renormalizing factor != 1 with recenter=False' - assert 0.966387 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different than expected when recenter=False' + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, soiling_insolation, reps=10, recenter=False + ) + assert ( + 1 == soiling_info["renormalizing_factor"] + ), "Renormalizing factor != 1 with recenter=False" + assert 0.966387 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different than expected when recenter=False" def test_soiling_srr_negative_step(soiling_normalized_daily, soiling_insolation): @@ -202,102 +310,137 @@ def test_soiling_srr_negative_step(soiling_normalized_daily, soiling_insolation) stepped_daily.iloc[37:] = stepped_daily.iloc[37:] - 0.1 np.random.seed(1977) - with pytest.warns(UserWarning, match='20% or more of the daily data'): - sr, sr_ci, soiling_info = soiling_srr(stepped_daily, soiling_insolation, reps=10) - - assert list(soiling_info['soiling_interval_summary']['valid'].values) == [True, False, True], \ - 'Soiling interval validity differs from expected when a large negative step\ - is incorporated into the data' - - assert 0.936932 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected when a large negative step is incorporated into the data' # noqa: E501 - - -def test_soiling_srr_max_negative_slope_error(soiling_normalized_daily, soiling_insolation): + with pytest.warns(UserWarning, match="20% or more of the daily data"): + sr, sr_ci, soiling_info = soiling_srr( + stepped_daily, soiling_insolation, reps=10 + ) + + assert list(soiling_info["soiling_interval_summary"]["valid"].values) == [ + True, + False, + True, + ], "Soiling interval validity differs from expected when a large negative step\ + is incorporated into the data" + + assert 0.936932 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected when a large negative step is incorporated into the data" # noqa: E501 + + +def test_soiling_srr_max_negative_slope_error( + soiling_normalized_daily, soiling_insolation +): np.random.seed(1977) - with pytest.warns(UserWarning, match='20% or more of the daily data'): - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily, soiling_insolation, - reps=10, max_relative_slope_error=45.0) + with pytest.warns(UserWarning, match="20% or more of the daily data"): + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily, + soiling_insolation, + reps=10, + max_relative_slope_error=45.0, + ) - assert list(soiling_info['soiling_interval_summary']['valid'].values) == [True, True, False], \ - 'Soiling interval validity differs from expected when max_relative_slope_error=45.0' + assert list(soiling_info["soiling_interval_summary"]["valid"].values) == [ + True, + True, + False, + ], "Soiling interval validity differs from expected when max_relative_slope_error=45.0" - assert 0.958761 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected when max_relative_slope_error=45.0' + assert 0.958761 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected when max_relative_slope_error=45.0" def test_soiling_srr_with_nan_interval(soiling_normalized_daily, soiling_insolation): - ''' + """ Previous versions had a bug which would have raised an error when an entire interval was NaN. See https://github.com/NREL/rdtools/issues/129 - ''' + """ reps = 10 normalized_corrupt = soiling_normalized_daily.copy() normalized_corrupt[26:50] = np.nan np.random.seed(1977) - with pytest.warns(UserWarning, match='20% or more of the daily data'): - sr, sr_ci, soiling_info = soiling_srr(normalized_corrupt, soiling_insolation, reps=reps) - assert 0.948792 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected value when an entire interval was NaN' - - with pytest.warns(UserWarning, match='20% or more of the daily data'): - sr, sr_ci, soiling_info = soiling_srr(normalized_corrupt, soiling_insolation, reps=reps, method="perfect_clean_complex", piecewise=True, neg_shift=True) - assert 0.974225 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected value when an entire interval was NaN' - + with pytest.warns(UserWarning, match="20% or more of the daily data"): + sr, sr_ci, soiling_info = soiling_srr( + normalized_corrupt, soiling_insolation, reps=reps + ) + assert 0.948792 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected value when an entire interval was NaN" + + with pytest.warns(UserWarning, match="20% or more of the daily data"): + sr, sr_ci, soiling_info = soiling_srr( + normalized_corrupt, + soiling_insolation, + reps=reps, + method="perfect_clean_complex", + piecewise=True, + neg_shift=True, + ) + assert 0.974225 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected value when an entire interval was NaN" + def test_soiling_srr_outlier_factor(soiling_normalized_daily, soiling_insolation): - _, _, info = soiling_srr(soiling_normalized_daily, soiling_insolation, - reps=1, outlier_factor=8) - assert len(info['soiling_interval_summary']) == 2, \ - 'Increasing the outlier_factor did not result in the expected number of soiling intervals' + _, _, info = soiling_srr( + soiling_normalized_daily, soiling_insolation, reps=1, outlier_factor=8 + ) + assert ( + len(info["soiling_interval_summary"]) == 2 + ), "Increasing the outlier_factor did not result in the expected number of soiling intervals" def test_soiling_srr_kwargs(monkeypatch, soiling_normalized_daily, soiling_insolation): - ''' + """ Make sure that all soiling_srr parameters get passed on to SRRAnalysis and SRRAnalysis.run(), i.e. all necessary inputs to SRRAnalysis are provided by soiling_srr. Done by removing the SRRAnalysis default param values and making sure everything still runs. - ''' + """ # the __defaults__ attr is the tuple of default values in py3 monkeypatch.delattr(SRRAnalysis.__init__, "__defaults__") monkeypatch.delattr(SRRAnalysis.run, "__defaults__") _ = soiling_srr(soiling_normalized_daily, soiling_insolation, reps=10) -@pytest.mark.parametrize(('start,expected_sr'), - [(18, 0.984779), (17, 0.981258)]) -def test_soiling_srr_min_interval_length_default(soiling_normalized_daily, soiling_insolation, - start, expected_sr): - ''' +@pytest.mark.parametrize(("start,expected_sr"), [(18, 0.984779), (17, 0.981258)]) +def test_soiling_srr_min_interval_length_default( + soiling_normalized_daily, soiling_insolation, start, expected_sr +): + """ Make sure that the default value of min_interval_length is 7 days by testing on a cropped version of the example data - ''' + """ reps = 10 np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily[start:], - soiling_insolation[start:], reps=reps) - assert expected_sr == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected value' + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily[start:], soiling_insolation[start:], reps=reps + ) + assert expected_sr == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected value" -@pytest.mark.parametrize('test_param', ['energy_normalized_daily', - 'insolation_daily', - 'precipitation_daily']) +@pytest.mark.parametrize( + "test_param", ["energy_normalized_daily", "insolation_daily", "precipitation_daily"] +) def test_soiling_srr_non_daily_inputs(test_param): - ''' + """ Validate the frequency check for input time series - ''' - dummy_daily_explicit = pd.Series(0, index=pd.date_range('2019-01-01', periods=10, freq='d')) - dummy_daily_implicit = pd.Series(0, index=pd.date_range('2019-01-01', periods=10, freq='d')) + """ + dummy_daily_explicit = pd.Series( + 0, index=pd.date_range("2019-01-01", periods=10, freq="d") + ) + dummy_daily_implicit = pd.Series( + 0, index=pd.date_range("2019-01-01", periods=10, freq="d") + ) dummy_daily_implicit.index.freq = None dummy_nondaily = pd.Series(0, index=dummy_daily_explicit.index[::2]) kwargs = { - 'energy_normalized_daily': dummy_daily_explicit, - 'insolation_daily': dummy_daily_explicit, - 'precipitation_daily': dummy_daily_explicit, + "energy_normalized_daily": dummy_daily_explicit, + "insolation_daily": dummy_daily_explicit, + "precipitation_daily": dummy_daily_explicit, } # no error for implicit daily inputs kwargs[test_param] = dummy_daily_implicit @@ -305,88 +448,160 @@ def test_soiling_srr_non_daily_inputs(test_param): # yes error for non-daily inputs kwargs[test_param] = dummy_nondaily - with pytest.raises(ValueError, match='must have daily frequency'): + with pytest.raises(ValueError, match="must have daily frequency"): _ = SRRAnalysis(**kwargs) def test_soiling_srr_argument_checks(soiling_normalized_daily, soiling_insolation): - ''' + """ Make sure various argument validation warnings and errors are raised - ''' + """ kwargs = { - 'energy_normalized_daily': soiling_normalized_daily, - 'insolation_daily': soiling_insolation, - 'reps': 10 + "energy_normalized_daily": soiling_normalized_daily, + "insolation_daily": soiling_insolation, + "reps": 10, } - with pytest.warns(UserWarning, match='An even value of day_scale was passed'): + with pytest.warns(UserWarning, match="An even value of day_scale was passed"): _ = soiling_srr(day_scale=12, **kwargs) - with pytest.raises(ValueError, match='clean_criterion must be one of'): - _ = soiling_srr(clean_criterion='bad', **kwargs) + with pytest.raises(ValueError, match="clean_criterion must be one of"): + _ = soiling_srr(clean_criterion="bad", **kwargs) + + with pytest.raises(ValueError, match="Invalid method specification"): + _ = soiling_srr(method="bad", **kwargs) - with pytest.raises(ValueError, match='Invalid method specification'): - _ = soiling_srr(method='bad', **kwargs) # ########################### # negetive shift and piecewise tests # ########################### -@pytest.mark.parametrize('method,neg_shift,expected_sr', - [('half_norm_clean', False, 0.980143), - ('half_norm_clean', True, 0.975057), - ('perfect_clean_complex', False, 0.983797), - ('perfect_clean_complex', True, 0.964117), - ('inferred_clean_complex', False, 0.983265), - ('inferred_clean_complex', True, 0.963585)]) -def test_negative_shifts(soiling_normalized_daily_with_neg_shifts, soiling_insolation, soiling_times, method, neg_shift, expected_sr): +@pytest.mark.parametrize( + "method,neg_shift,expected_sr", + [ + ("half_norm_clean", False, 0.980143), + ("half_norm_clean", True, 0.975057), + ("perfect_clean_complex", False, 0.983797), + ("perfect_clean_complex", True, 0.964117), + ("inferred_clean_complex", False, 0.983265), + ("inferred_clean_complex", True, 0.963585), + ], +) +def test_negative_shifts( + soiling_normalized_daily_with_neg_shifts, + soiling_insolation, + soiling_times, + method, + neg_shift, + expected_sr, +): reps = 10 np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily_with_neg_shifts, soiling_insolation, reps=reps, - method=method, neg_shift=neg_shift) - assert expected_sr == pytest.approx(sr, abs=1e-6), \ - f'Soiling ratio with method="{method}" and neg_shift="{neg_shift}" different from expected value' - -@pytest.mark.parametrize('method,piecewise,expected_sr', - [('half_norm_clean', False, 0.8670264), - ('half_norm_clean', True, 0.927017), - ('perfect_clean_complex', False, 0.891499), - ('perfect_clean_complex', True, 0.896936), - ('inferred_clean_complex', False, 0.874486), - ('inferred_clean_complex', True, 0.896214)]) -def test_piecewise(soiling_normalized_daily_with_piecewise_slope, soiling_insolation, soiling_times, method, piecewise, expected_sr): + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily_with_neg_shifts, + soiling_insolation, + reps=reps, + method=method, + neg_shift=neg_shift, + ) + assert expected_sr == pytest.approx( + sr, abs=1e-6 + ), f'Soiling ratio with method="{method}" and neg_shift="{neg_shift}" different from expected value' + + +@pytest.mark.parametrize( + "method,piecewise,expected_sr", + [ + ("half_norm_clean", False, 0.8670264), + ("half_norm_clean", True, 0.927017), + ("perfect_clean_complex", False, 0.891499), + ("perfect_clean_complex", True, 0.896936), + ("inferred_clean_complex", False, 0.874486), + ("inferred_clean_complex", True, 0.896214), + ], +) +def test_piecewise( + soiling_normalized_daily_with_piecewise_slope, + soiling_insolation, + soiling_times, + method, + piecewise, + expected_sr, +): reps = 10 np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily_with_piecewise_slope, soiling_insolation, reps=reps, - method=method, piecewise=piecewise) - assert expected_sr == pytest.approx(sr, abs=1e-6), \ - f'Soiling ratio with method="{method}" and piecewise="{piecewise}" different from expected value' - -def test_piecewise_and_neg_shifts(soiling_normalized_daily_with_piecewise_slope, soiling_normalized_daily_with_neg_shifts, soiling_insolation, soiling_times): + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily_with_piecewise_slope, + soiling_insolation, + reps=reps, + method=method, + piecewise=piecewise, + ) + assert expected_sr == pytest.approx( + sr, abs=1e-6 + ), f'Soiling ratio with method="{method}" and piecewise="{piecewise}" different from expected value' + + +def test_piecewise_and_neg_shifts( + soiling_normalized_daily_with_piecewise_slope, + soiling_normalized_daily_with_neg_shifts, + soiling_insolation, + soiling_times, +): reps = 10 np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily_with_piecewise_slope, soiling_insolation, reps=reps, - method='perfect_clean_complex', piecewise=True, neg_shift=True) - assert 0.896936 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected value for data with piecewise slopes' + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily_with_piecewise_slope, + soiling_insolation, + reps=reps, + method="perfect_clean_complex", + piecewise=True, + neg_shift=True, + ) + assert 0.896936 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected value for data with piecewise slopes" np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily_with_neg_shifts, soiling_insolation, reps=reps, - method='perfect_clean_complex', piecewise=True, neg_shift=True) - assert 0.964117 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio different from expected value for data with negative shifts' - -def test_complex_sr_clean_threshold(soiling_normalized_daily_with_neg_shifts, soiling_insolation): - '''Test that clean test_soiling_srr_clean_threshold works with a float and - can cause no soiling intervals to be found''' + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily_with_neg_shifts, + soiling_insolation, + reps=reps, + method="perfect_clean_complex", + piecewise=True, + neg_shift=True, + ) + assert 0.964117 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio different from expected value for data with negative shifts" + + +def test_complex_sr_clean_threshold( + soiling_normalized_daily_with_neg_shifts, soiling_insolation +): + """Test that clean test_soiling_srr_clean_threshold works with a float and + can cause no soiling intervals to be found""" np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily_with_neg_shifts, soiling_insolation, reps=10, - clean_threshold=0.1, method='perfect_clean_complex', piecewise=True, neg_shift=True) - assert 0.934926 == pytest.approx(sr, abs=1e-6), \ - 'Soiling ratio with specified clean_threshold different from expected value' - + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily_with_neg_shifts, + soiling_insolation, + reps=10, + clean_threshold=0.1, + method="perfect_clean_complex", + piecewise=True, + neg_shift=True, + ) + assert 0.934926 == pytest.approx( + sr, abs=1e-6 + ), "Soiling ratio with specified clean_threshold different from expected value" + with pytest.raises(NoValidIntervalError): np.random.seed(1977) - sr, sr_ci, soiling_info = soiling_srr(soiling_normalized_daily_with_neg_shifts, soiling_insolation, - reps=10, clean_threshold=1) - + sr, sr_ci, soiling_info = soiling_srr( + soiling_normalized_daily_with_neg_shifts, + soiling_insolation, + reps=10, + clean_threshold=1, + ) + + # ########################### # annual_soiling_ratios tests # ########################### @@ -394,25 +609,30 @@ def test_complex_sr_clean_threshold(soiling_normalized_daily_with_neg_shifts, so @pytest.fixture() def multi_year_profiles(): - times = pd.date_range('01-01-2018', '11-30-2019', freq='D') - data = np.array([0]*365 + [10]*334) + times = pd.date_range("01-01-2018", "11-30-2019", freq="D") + data = np.array([0] * 365 + [10] * 334) profiles = [pd.Series(x + data, times) for x in range(10)] # make insolation slighly longer to test for proper normalization - times = pd.date_range('01-01-2018', '12-31-2019', freq='D') - insolation = 350*[0.8] + (len(times)-350)*[1] + times = pd.date_range("01-01-2018", "12-31-2019", freq="D") + insolation = 350 * [0.8] + (len(times) - 350) * [1] insolation = pd.Series(insolation, index=times) return profiles, insolation def test_annual_soiling_ratios(multi_year_profiles): - expected_data = np.array([[2018, 4.5, 1.431, 7.569], - [2019, 14.5, 11.431, 17.569]]) - expected = pd.DataFrame(data=expected_data, - columns=['year', 'soiling_ratio_median', 'soiling_ratio_low', - 'soiling_ratio_high']) - expected['year'] = expected['year'].astype(int) + expected_data = np.array([[2018, 4.5, 1.431, 7.569], [2019, 14.5, 11.431, 17.569]]) + expected = pd.DataFrame( + data=expected_data, + columns=[ + "year", + "soiling_ratio_median", + "soiling_ratio_low", + "soiling_ratio_high", + ], + ) + expected["year"] = expected["year"].astype(int) srr_profiles, insolation = multi_year_profiles result = annual_soiling_ratios(srr_profiles, insolation) @@ -421,12 +641,17 @@ def test_annual_soiling_ratios(multi_year_profiles): def test_annual_soiling_ratios_confidence_interval(multi_year_profiles): - expected_data = np.array([[2018, 4.5, 0.225, 8.775], - [2019, 14.5, 10.225, 18.775]]) - expected = pd.DataFrame(data=expected_data, - columns=['year', 'soiling_ratio_median', 'soiling_ratio_low', - 'soiling_ratio_high']) - expected['year'] = expected['year'].astype(int) + expected_data = np.array([[2018, 4.5, 0.225, 8.775], [2019, 14.5, 10.225, 18.775]]) + expected = pd.DataFrame( + data=expected_data, + columns=[ + "year", + "soiling_ratio_median", + "soiling_ratio_low", + "soiling_ratio_high", + ], + ) + expected["year"] = expected["year"].astype(int) srr_profiles, insolation = multi_year_profiles result = annual_soiling_ratios(srr_profiles, insolation, confidence_level=95) @@ -437,9 +662,11 @@ def test_annual_soiling_ratios_confidence_interval(multi_year_profiles): def test_annual_soiling_ratios_warning(multi_year_profiles): srr_profiles, insolation = multi_year_profiles insolation = insolation.iloc[:-200] - match = ('The indexes of stochastic_soiling_profiles are not entirely contained ' - 'within the index of insolation_daily. Every day in stochastic_soiling_profiles ' - 'should be represented in insolation_daily. This may cause erroneous results.') + match = ( + "The indexes of stochastic_soiling_profiles are not entirely contained " + "within the index of insolation_daily. Every day in stochastic_soiling_profiles " + "should be represented in insolation_daily. This may cause erroneous results." + ) with pytest.warns(UserWarning, match=match): _ = annual_soiling_ratios(srr_profiles, insolation) @@ -451,41 +678,48 @@ def test_annual_soiling_ratios_warning(multi_year_profiles): @pytest.fixture() def soiling_interval_summary(): - starts = ['2019/01/01', '2019/01/16', '2019/02/08', '2019/03/06'] - starts = pd.to_datetime(starts).tz_localize('America/Denver') - ends = ['2019/01/15', '2019/02/07', '2019/03/05', '2019/04/07'] - ends = pd.to_datetime(ends).tz_localize('America/Denver') + starts = ["2019/01/01", "2019/01/16", "2019/02/08", "2019/03/06"] + starts = pd.to_datetime(starts).tz_localize("America/Denver") + ends = ["2019/01/15", "2019/02/07", "2019/03/05", "2019/04/07"] + ends = pd.to_datetime(ends).tz_localize("America/Denver") slopes = [-0.005, -0.002, -0.001, -0.002] slopes_low = [-0.0055, -0.0025, -0.0015, -0.003] slopes_high = [-0.004, 0, 0, -0.001] valids = [True, True, False, True] soiling_interval_summary = pd.DataFrame() - soiling_interval_summary['start'] = starts - soiling_interval_summary['end'] = ends - soiling_interval_summary['soiling_rate'] = slopes - soiling_interval_summary['soiling_rate_low'] = slopes_low - soiling_interval_summary['soiling_rate_high'] = slopes_high - soiling_interval_summary['inferred_start_loss'] = np.nan - soiling_interval_summary['inferred_end_loss'] = np.nan - soiling_interval_summary['length'] = (ends - starts).days - soiling_interval_summary['valid'] = valids + soiling_interval_summary["start"] = starts + soiling_interval_summary["end"] = ends + soiling_interval_summary["soiling_rate"] = slopes + soiling_interval_summary["soiling_rate_low"] = slopes_low + soiling_interval_summary["soiling_rate_high"] = slopes_high + soiling_interval_summary["inferred_start_loss"] = np.nan + soiling_interval_summary["inferred_end_loss"] = np.nan + soiling_interval_summary["length"] = (ends - starts).days + soiling_interval_summary["valid"] = valids return soiling_interval_summary def _build_monthly_summary(top_rows): - ''' + """ Convienience function to build a full monthly soiling summary dataframe from the expected_top_rows which summarize Jan-April - ''' - - all_rows = np.vstack((top_rows, [[1, np.nan, np.nan, np.nan, 0]]*8)) - - df = pd.DataFrame(data=all_rows, - columns=['month', 'soiling_rate_median', 'soiling_rate_low', - 'soiling_rate_high', 'interval_count']) - df['month'] = range(1, 13) + """ + + all_rows = np.vstack((top_rows, [[1, np.nan, np.nan, np.nan, 0]] * 8)) + + df = pd.DataFrame( + data=all_rows, + columns=[ + "month", + "soiling_rate_median", + "soiling_rate_low", + "soiling_rate_high", + "interval_count", + ], + ) + df["month"] = range(1, 13) return df @@ -494,11 +728,38 @@ def test_monthly_soiling_rates(soiling_interval_summary): np.random.seed(1977) result = monthly_soiling_rates(soiling_interval_summary) - expected = np.array([ - [1.00000000e+00, -2.42103810e-03, -5.00912766e-03, -7.68551806e-04, 2.00000000e+00], - [2.00000000e+00, -1.25092837e-03, -2.10091842e-03, -3.97354321e-04, 1.00000000e+00], - [3.00000000e+00, -2.00313359e-03, -2.68359541e-03, -1.31927678e-03, 1.00000000e+00], - [4.00000000e+00, -1.99729563e-03, -2.68067699e-03, -1.31667446e-03, 1.00000000e+00]]) + expected = np.array( + [ + [ + 1.00000000e00, + -2.42103810e-03, + -5.00912766e-03, + -7.68551806e-04, + 2.00000000e00, + ], + [ + 2.00000000e00, + -1.25092837e-03, + -2.10091842e-03, + -3.97354321e-04, + 1.00000000e00, + ], + [ + 3.00000000e00, + -2.00313359e-03, + -2.68359541e-03, + -1.31927678e-03, + 1.00000000e00, + ], + [ + 4.00000000e00, + -1.99729563e-03, + -2.68067699e-03, + -1.31667446e-03, + 1.00000000e00, + ], + ] + ) expected = _build_monthly_summary(expected) pd.testing.assert_frame_equal(result, expected, check_dtype=False) @@ -508,11 +769,38 @@ def test_monthly_soiling_rates_min_interval_length(soiling_interval_summary): np.random.seed(1977) result = monthly_soiling_rates(soiling_interval_summary, min_interval_length=20) - expected = np.array([ - [1.00000000e+00, -1.24851539e-03, -2.10394564e-03, -3.98358211e-04, 1.00000000e+00], - [2.00000000e+00, -1.25092837e-03, -2.10091842e-03, -3.97330424e-04, 1.00000000e+00], - [3.00000000e+00, -2.00309454e-03, -2.68359541e-03, -1.31927678e-03, 1.00000000e+00], - [4.00000000e+00, -1.99729563e-03, -2.68067699e-03, -1.31667446e-03, 1.00000000e+00]]) + expected = np.array( + [ + [ + 1.00000000e00, + -1.24851539e-03, + -2.10394564e-03, + -3.98358211e-04, + 1.00000000e00, + ], + [ + 2.00000000e00, + -1.25092837e-03, + -2.10091842e-03, + -3.97330424e-04, + 1.00000000e00, + ], + [ + 3.00000000e00, + -2.00309454e-03, + -2.68359541e-03, + -1.31927678e-03, + 1.00000000e00, + ], + [ + 4.00000000e00, + -1.99729563e-03, + -2.68067699e-03, + -1.31667446e-03, + 1.00000000e00, + ], + ] + ) expected = _build_monthly_summary(expected) pd.testing.assert_frame_equal(result, expected, check_dtype=False) @@ -520,13 +808,36 @@ def test_monthly_soiling_rates_min_interval_length(soiling_interval_summary): def test_monthly_soiling_rates_max_slope_err(soiling_interval_summary): np.random.seed(1977) - result = monthly_soiling_rates(soiling_interval_summary, max_relative_slope_error=120) - - expected = np.array([ - [1.00000000e+00, -4.74910923e-03, -5.26236739e-03, -4.23901493e-03, 1.00000000e+00], - [2.00000000e+00, np.nan, np.nan, np.nan, 0.00000000e+00], - [3.00000000e+00, -2.00074270e-03, -2.68073474e-03, -1.31786434e-03, 1.00000000e+00], - [4.00000000e+00, -2.00309454e-03, -2.68359541e-03, -1.31927678e-03, 1.00000000e+00]]) + result = monthly_soiling_rates( + soiling_interval_summary, max_relative_slope_error=120 + ) + + expected = np.array( + [ + [ + 1.00000000e00, + -4.74910923e-03, + -5.26236739e-03, + -4.23901493e-03, + 1.00000000e00, + ], + [2.00000000e00, np.nan, np.nan, np.nan, 0.00000000e00], + [ + 3.00000000e00, + -2.00074270e-03, + -2.68073474e-03, + -1.31786434e-03, + 1.00000000e00, + ], + [ + 4.00000000e00, + -2.00309454e-03, + -2.68359541e-03, + -1.31927678e-03, + 1.00000000e00, + ], + ] + ) expected = _build_monthly_summary(expected) pd.testing.assert_frame_equal(result, expected, check_dtype=False) @@ -536,11 +847,38 @@ def test_monthly_soiling_rates_confidence_level(soiling_interval_summary): np.random.seed(1977) result = monthly_soiling_rates(soiling_interval_summary, confidence_level=95) - expected = np.array([ - [1.00000000e+00, -2.42103810e-03, -5.42313113e-03, -1.21156562e-04, 2.00000000e+00], - [2.00000000e+00, -1.25092837e-03, -2.43731574e-03, -6.23842627e-05, 1.00000000e+00], - [3.00000000e+00, -2.00313359e-03, -2.94998476e-03, -1.04988760e-03, 1.00000000e+00], - [4.00000000e+00, -1.99729563e-03, -2.95063841e-03, -1.04869949e-03, 1.00000000e+00]]) + expected = np.array( + [ + [ + 1.00000000e00, + -2.42103810e-03, + -5.42313113e-03, + -1.21156562e-04, + 2.00000000e00, + ], + [ + 2.00000000e00, + -1.25092837e-03, + -2.43731574e-03, + -6.23842627e-05, + 1.00000000e00, + ], + [ + 3.00000000e00, + -2.00313359e-03, + -2.94998476e-03, + -1.04988760e-03, + 1.00000000e00, + ], + [ + 4.00000000e00, + -1.99729563e-03, + -2.95063841e-03, + -1.04869949e-03, + 1.00000000e00, + ], + ] + ) expected = _build_monthly_summary(expected) @@ -551,11 +889,38 @@ def test_monthly_soiling_rates_reps(soiling_interval_summary): np.random.seed(1977) result = monthly_soiling_rates(soiling_interval_summary, reps=3) - expected = np.array([ - [1.00000000e+00, -2.88594088e-03, -5.03736679e-03, -6.47391131e-04, 2.00000000e+00], - [2.00000000e+00, -1.67359565e-03, -2.00504171e-03, -1.33240044e-03, 1.00000000e+00], - [3.00000000e+00, -1.22306993e-03, -2.19274892e-03, -1.11793240e-03, 1.00000000e+00], - [4.00000000e+00, -1.94675549e-03, -2.42574164e-03, -1.54850795e-03, 1.00000000e+00]]) + expected = np.array( + [ + [ + 1.00000000e00, + -2.88594088e-03, + -5.03736679e-03, + -6.47391131e-04, + 2.00000000e00, + ], + [ + 2.00000000e00, + -1.67359565e-03, + -2.00504171e-03, + -1.33240044e-03, + 1.00000000e00, + ], + [ + 3.00000000e00, + -1.22306993e-03, + -2.19274892e-03, + -1.11793240e-03, + 1.00000000e00, + ], + [ + 4.00000000e00, + -1.94675549e-03, + -2.42574164e-03, + -1.54850795e-03, + 1.00000000e00, + ], + ] + ) expected = _build_monthly_summary(expected)