forked from CCBR/DSP_Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DSP_functions.R
545 lines (387 loc) · 18.7 KB
/
DSP_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# Required libraries for functions
library(pheatmap)
subset_counts_for_lmm <- function(counts,
annotation,
subset.list){
subset.counts <- counts
subset.annotation <- annotation
# Subset the object based on the given annotations
for(column in names(subset.list)){
subset.annotation <- subset.annotation %>%
filter(.[[column]] %in% subset.list[[column]])
subset.IDs <- subset.annotation$Sample_ID
subset.columns <- c("gene", subset.IDs)
subset.counts <- subset.counts %>%
select(all_of(subset.columns))
# Factor the columns with relevant annotations
subset.annotation[[column]] <- factor(subset.annotation[[column]])
}
# Factor the slide column
subset.annotation[["slide_name"]] <- factor(subset.annotation[["slide_name"]])
# Create log2 counts
subset.counts.log2 <- subset.counts %>%
mutate(across(where(is.numeric), log2))
return(list("subset.counts" = subset.counts,
"subset.log.counts" = subset.counts.log2,
"subset.annotation" = subset.annotation))
}
subset_object_for_lmm <- function(object,
subset.list){
# Set up the object to subset
subset.object <- object
# Subset the object based on the given annotations
for(column in names(subset.list)){
subset.indices <- pData(subset.object)[[column]] %in% subset.list[[column]]
subset.object <- subset.object[, subset.indices]
# Factor the columns with relevant annotations
pData(subset.object)[[column]] <- factor(pData(subset.object)[[column]])
}
# Factor the slide column
pData(subset.object)[["slide_name"]] <-
factor(pData(subset.object)[["slide_name"]])
# Create log2 counts
assayDataElement(object = subset.object, elt = "log_q") <-
assayDataApply(subset.object, 2, FUN = log, base = 2, elt = "q_norm")
assayDataElement(object = subset.object, elt = "log_raw") <-
assayDataApply(subset.object, 2, FUN = log, base = 2, elt = "exprs")
# Gather the log counts and annotation to return
log.counts <- subset.object@assayData$log_q
raw.log.counts <- subset.object@assayData$log_raw
annotation.df <- pData(subset.object)
# Replace all bad characters in column names
annotation.df <- annotation.df %>%
rename_all(~str_replace_all(., " ", "_"))
return(list("subset.object" = subset.object,
"log.counts" = log.counts,
"raw.log.counts" = raw.log.counts,
"annotation" = annotation.df))
}
run_limma <- function(counts,
annotation,
include.slide,
within.slide,
contrast,
contrast.levels){
# Create the DGE object
DGE.list <- DGEList(counts = counts,
samples = annotation)
if(include.slide == FALSE){
# Create the LM model design
design <- model.matrix(formula(paste0("~ 0 + ", contrast)),
data = DGE.list$samples)
} else {
if(within.slide == TRUE){
# For within slide we use a random slope in the mixed effect
# Create the LM model design with slide as a mixed effect
design <- model.matrix(formula(paste0("~ 1 + ",
contrast,
" + (1 + " ,
contrast,
" | slide_name)")),
data = DGE.list$samples)
} else{
# For between slide we use slide in the mixed effect, no random slope
# Create the LM model design with slide as a mixed effect
design <- model.matrix(formula(paste0("~ 1 + ",
contrast,
" + (1 | slide_name)")),
data = DGE.list$samples)
}
}
# Create the fit for the model
fit <- lmFit(DGE.list$counts, design)
# Set up the contrast
contrast.level.ref <- paste0(contrast, contrast.levels[[1]])
contrast.level.condition <- paste0(contrast, contrast.levels[[2]])
contrast <- makeContrasts(paste0(contrast.level.condition,
" - ",
contrast.level.ref),
levels = colnames(coef(fit)))
# Generate the estimate of the contrast
contrast.estimate <- contrasts.fit(fit, contrast)
# Run Empirical Bayes smoothing of standard errors
fit.eb <- eBayes(contrast.estimate, robust = TRUE)
# Generate the results table
results <- topTable(fit.eb, sort.by = "P", n=Inf)
return(list("results" = results,
"fit" = fit.eb,
"design" = design))
}
run_lmm <- function(object, contrast, within.slide){
if(within.slide == TRUE){
# Run the linear model with random slope
lmm.results <- mixedModelDE(object,
elt = "log_q",
modelFormula = formula(paste0("~ 1 + ",
contrast,
" + (1 + " ,
contrast,
" | slide_name)")),
groupVar = contrast,
nCores = parallel::detectCores(),
multiCore = TRUE)
} else {
lmm.results <- mixedModelDE(object,
elt = "log_q",
modelFormula = formula(paste0("~ 1 + ",
contrast,
" + (1 | slide_name)")),
groupVar = contrast,
nCores = parallel::detectCores(),
multiCore = TRUE)
}
# Gather the results into an output table
lmm.results.summary <- do.call(rbind, lmm.results["lsmeans", ])
lmm.results.summary <- as.data.frame(lmm.results.summary)
# use lapply in case you have multiple levels of your test factor to
# correctly associate gene name with it's row in the results table
lmm.results.summary$gene <-
unlist(lapply(colnames(lmm.results),
rep, nrow(lmm.results["lsmeans", ][[1]])))
# Run multiple test correction
lmm.results.summary$FDR <- p.adjust(lmm.results.summary$`Pr(>|t|)`,
method = "fdr")
# Rename columns
lmm.results.summary$pval <- lmm.results.summary[["Pr(>|t|)"]]
lmm.results.summary$adj_pval <- lmm.results.summary$FDR
lmm.results.summary$logfc <- lmm.results.summary$Estimate
# Format final summary data frame
lmm.results.summary <- lmm.results.summary[, c("gene", "logfc",
"pval", "adj_pval")]
return(list("results" = lmm.results.summary, "lm.output" = lmm.results))
}
make_volcano <- function(lmm.results,
title,
legend.title,
x.axis.title,
fc.limit = 1,
pos.label.limit = 1,
neg.label.limit = -1){
## Make a volcano plot for the comparison
# Define the columns for the volcano plot data
#logfc.column.name <- paste0("logFC_", comparison)
#padj.column.name <- paste0("adj.pval", comparison)
#results$logfc <- results[[logfc.column.name]]
#results$padj <- results[[padj.column.name]]
# Create a column for direction of DEGs
lmm.results$de_direction <- "NONE"
lmm.results$de_direction[lmm.results$padj < 0.05 &
lmm.results$logfc > fc.limit] <- "UP"
lmm.results$de_direction[lmm.results$padj < 0.05 &
lmm.results$logfc < -fc.limit] <- "DOWN"
# Create a label for DEGs based on label limits
lmm.results$deglabel <- ifelse((lmm.results$logfc > pos.label.limit |
lmm.results$logfc < neg.label.limit) &
lmm.results$padj < 0.05,
lmm.results$gene,
NA
)
# Compute the scale for the volcano x-axis
log2.scale <- max(abs(lmm.results$logfc))
# Establish the color scheme for the volcano plot
contrast.level.colors <- c("steelblue4", "grey", "violetred4")
names(contrast.level.colors) <- c("DOWN", "NONE", "UP")
# Make the volcano plot
volcano.plot <- ggplot(data = lmm.results, aes(x = logfc,
y = -log10(padj),
col = de_direction,
label = deglabel)) +
geom_vline(xintercept = c(-fc.limit, fc.limit), col = "gray", linetype = 'dashed') +
geom_hline(yintercept = -log10(0.05), col = "gray", linetype = 'dashed') +
xlim(-7.5, 7.5) +
labs(x = x.axis.title,
y = "-log10 adjusted p-value",
title = title) +
geom_point(size = 2) +
scale_color_manual(legend.title,
values = contrast.level.colors) +
geom_text_repel(max.overlaps = Inf) +
xlim(-log2.scale-1, log2.scale+1) +
theme(plot.title = element_text(hjust = 0.5))
return(list("volcano.plot" = volcano.plot))
}
region.types <- c("tumor", "vessel")
# Set up the MA plot table
make_MA <- function(contrast.field,
condition.label,
reference.label,
results.df,
log.counts,
raw.log.counts,
annotation){
# Gather the sample IDs for condition and reference groups
condition.samples <- rownames(annotation[annotation[[contrast.field]] == condition.label, ])
reference.samples <- rownames(annotation[annotation[[contrast.field]] == reference.label, ])
# Gather normalized and raw counts for both groups
condition.counts <- as.data.frame(log.counts[, condition.samples])
reference.counts <- as.data.frame(log.counts[, reference.samples])
condition.raw.counts <- as.data.frame(raw.log.counts[, condition.samples])
reference.raw.counts <- as.data.frame(raw.log.counts[, reference.samples])
# Get the mean log score for each gene for both
# normalized counts
condition.row.order <- rownames(condition.counts)
condition.counts <- as.data.frame(sapply(condition.counts, as.numeric))
condition.counts$cond_mean <- rowMeans(condition.counts)
condition.counts$gene <- condition.row.order
reference.row.order <- rownames(reference.counts)
reference.counts <- as.data.frame(sapply(reference.counts, as.numeric))
reference.counts$ref_mean <- rowMeans(reference.counts)
reference.counts$gene <- reference.row.order
# raw counts
condition.row.order <- rownames(condition.raw.counts)
condition.raw.counts <- as.data.frame(sapply(condition.raw.counts, as.numeric))
condition.raw.counts$cond_raw_mean <- rowMeans(condition.raw.counts)
condition.raw.counts$gene <- condition.row.order
reference.row.order <- rownames(reference.raw.counts)
reference.raw.counts <- as.data.frame(sapply(reference.raw.counts, as.numeric))
reference.raw.counts$ref_raw_mean <- rowMeans(reference.raw.counts)
reference.raw.counts$gene <- reference.row.order
# Create a new data frame of the gene and group means with M and A values
normalized.counts <- merge(condition.counts, reference.counts, by = "gene") %>%
select(gene, cond_mean, ref_mean) %>%
mutate(M.value = cond_mean - ref_mean) %>%
mutate(A.value = (cond_mean + ref_mean)/2)
raw.counts <- merge(condition.raw.counts, reference.raw.counts, by = "gene") %>%
select(gene, cond_raw_mean, ref_raw_mean) %>%
mutate(M.raw.value = cond_raw_mean - ref_raw_mean) %>%
mutate(A.raw.value = (cond_raw_mean + ref_raw_mean)/2)
# Add the DE results and log counts together
ma.plot.counts <- merge(normalized.counts, raw.counts, by = "gene")
# Set the bounds for the y axix so that they are aligned
min.y <- min(c(min(ma.plot.counts$M.value),min(ma.plot.counts$M.raw.value)))
max.y <- max(c(max(ma.plot.counts$M.value),max(ma.plot.counts$M.raw.value)))
ma.plot.norm <- ggplot(ma.plot.table, aes(x = A.value, y = M.value)) +
geom_point(alpha = 0.5, col = "black") +
geom_smooth(method=lm, col="steelblue1") +
geom_hline(yintercept = 0, lty = "dashed") +
labs(x = "Average log expression",
y = paste0("log(", condition.label, ") - log(", reference.label, ")"),
title = "Post-normalization") +
ylim(min.y, max.y) +
theme_classic()
ma.plot.raw <- ggplot(ma.plot.table, aes(x = A.raw.value, y = M.raw.value)) +
geom_point(alpha = 0.5, col = "black") +
geom_smooth(method=lm, col="steelblue1") +
geom_hline(yintercept = 0, lty = "dashed") +
labs(x = "Average log expression",
y = paste0("log(", condition.label, ") - log(", reference.label, ")"),
title = "Pre-normalization") +
ylim(min.y, max.y) +
theme_classic()
combined.MA.plots <- arrangeGrob(ggplotGrob(ma.plot.raw),
ggplotGrob(ma.plot.norm),
nrow = 1, ncol = 2)
return(combined.MA.plots)
}
run_GSEA <- function(){
}
make_heatmap <- function(normalized.log.counts.df,
de.results,
top.degs = FALSE,
top.variable = FALSE,
logfc.column = NULL,
logfc.cutoff = NULL,
annotation.column,
annotation.row = NULL,
anno.colors,
cluster.rows = FALSE,
cluster.columns = FALSE,
main.title,
row.gaps = NULL,
column.gaps = NULL,
show.rownames = FALSE,
show.colnames = FALSE){
if(top.degs == TRUE & top.variable == TRUE){
stop("Set only one of top.degs or top.variable to TRUE, not both")
}
if (top.variable == TRUE){
}
# Filter genes by top DEGs, if applicable
if(top.degs == TRUE){
# Arrange by adjusted p-value
degs.df <- de.results %>%
filter(padj < 0.05) %>%
arrange(desc(padj))
# Arrange by log FC
degs.df <- degs.df %>% arrange(desc(logfc))
if(!is.null(logfc.cutoff)){
degs.df <- degs.df %>%
filter(.data[[logfc.column]] > logfc.cutoff | .data[[logfc.column]] < -(logfc.cutoff))
}
# Revert to only p-value correction if no DEGs with logFC cutoff
if(length(rownames(degs.df)) < 2){
degs.df <- de.results %>%
filter(padj < 0.05) %>%
arrange(desc(padj))
print("Not enough DEGs with listed logFC cutoff, reverting to all DEGs with adj p-value < 0.05")
}
# If there are more then 500 DEGs, trim down to top 500
if(length(rownames(degs.df)) > 500){
degs.df <- degs.df %>% slice(1:500)
}
# Grab the list of DEGs
degs.list <- degs.df$gene
# Subset the counts df for the DEGs and order based on the DEGs list
counts <- normalized.log.counts.df[rownames(normalized.log.counts.df) %in% degs.list, ]
counts <- counts[match(degs.list, rownames(counts)), ]
} else {
counts <- normalized.log.counts.df
}
heatmap.plot <- pheatmap(counts,
main = main.title,
show_rownames = show.rownames,
scale = "row",
show_colnames = show.colnames,
border_color = NA,
cluster_rows = cluster.rows,
cluster_cols = cluster.columns,
clustering_method = "average",
clustering_distance_rows = "correlation",
clustering_distance_cols = "correlation",
color = colorRampPalette(c("blue", "white", "red"))(120),
annotation_row = annotation.row,
annotation_col = annotation.column,
annotation_colors = anno.colors,
gaps_row = row.gaps,
gaps_col = column.gaps,
fontsize_row = 4)
return(heatmap.plot)
}
calculate_signal2noise <- function(){
}
normalize_counts <- function() {}
gsea_preranked_list <- function(contrast.field,
contrast.levels,
annotation,
log.counts){
# Gather the signal to noise ratio for GSEA ranking
# Default method for ranking genes from GSEA manual:
# https://www.gsea-msigdb.org/gsea/doc/GSEAUserGuideTEXT.htm#_Metrics_for_Ranking
# Contrast level A is the "condition" (positive when calculating fold change)
contrast.A.annotation <- annotation %>%
filter(!!sym(contrast.field) == contrast.levels[1])
contrast.A.sampleIDs <- rownames(contrast.A.annotation)
contrast.A.counts <- as.data.frame(log.counts) %>%
select(all_of(contrast.A.sampleIDs))
contrast.A.counts$gene <- rownames(contrast.A.counts)
# Contrast level B is the "reference" (negative when calculating fold change)
contrast.B.annotation <- annotation %>%
filter(!!sym(contrast.field) == contrast.levels[2])
contrast.B.sampleIDs <- rownames(contrast.B.annotation)
contrast.B.counts <- as.data.frame(log.counts) %>%
select(all_of(contrast.B.sampleIDs))
contrast.B.counts$gene <- rownames(contrast.B.counts)
# Add a column to each contrast level for the mean and standard deviation
contrast.A.counts <- contrast.A.counts %>%
mutate(mean.A = rowMeans(select_if(., is.numeric))) %>%
mutate(stdev.A = apply(select_if(., is.numeric), 1, sd))
contrast.B.counts <- contrast.B.counts %>%
mutate(mean.B = rowMeans(select_if(., is.numeric))) %>%
mutate(stdev.B = apply(select_if(., is.numeric), 1, sd))
GSEA.preanked.df <- merge(contrast.A.counts, contrast.B.counts, by = "gene")
GSEA.preanked.df <- GSEA.preanked.df %>%
mutate(signal2noise = (mean.A - mean.B)/(stdev.A + stdev.B)) %>%
arrange(desc(signal2noise)) %>%
select(c(gene, mean.A, mean.B, stdev.A, stdev.B, signal2noise))
return(GSEA.preanked.df)
}