forked from Freshwater-Initiative/SkagitLandslideHazards
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoutput_dates_longterm.py
155 lines (136 loc) · 8.13 KB
/
output_dates_longterm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 16 08:18:30 2018
@author: Nicoleta Cristea ([email protected])
"""
#Use DHSVM saturation extent output to identify dates witn maximum saturated area in each water year
# export dates in DHSVM config format for outputting maps of saturation in
# subsequent runs as in example below:
#Map Date 1 1 = 08/01/1987-00 # output for this variable
#Map Date 2 1 = 08/01/1988-00 # Vary the first number from
#Map Date 3 1 = 08/01/1989-00
#Map Date 4 1 = 08/01/1990-00
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import xarray as xr
import time
# <codecell>
#load files, place data in pandas dataframes
sat_his1 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_1969-2001_biasLivneh_WRF_TH8-WhiteTH15_mu12.8_his/saturation_extent_historic_1969_2001.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_his2 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2001-2011_biasLivneh_WRF_TH8-WhiteTH15_mu12.8_his/saturation_extent_historic_2001_2011.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_his = pd.concat([sat_his1, sat_his2], axis=0, join='outer', ignore_index=False)
# <codecell>
sat1_CNRM_CM5_rcp85 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2039-2060_CNRM-CM5__rcp85_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat2_CNRM_CM5_rcp85 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2060-2099_CNRM-CM5__rcp85_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_CNRM_CM5_rcp85 = pd.concat([sat1_CNRM_CM5_rcp85, sat2_CNRM_CM5_rcp85], axis=0, join='outer', ignore_index=False)
# <codecell>
sat1_CNRM_CM5_rcp45 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2039-2069_CNRM-CM5__rcp45_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat2_CNRM_CM5_rcp45 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2069-2099_CNRM-CM5__rcp45_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_CNRM_CM5_rcp45 = pd.concat([sat1_CNRM_CM5_rcp45, sat2_CNRM_CM5_rcp45], axis=0, join='outer', ignore_index=False)
# <codecell>
sat1_HadGEM2_ES365_rcp85 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2039-2060_HadGEM2-ES365__rcp85_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat2_HadGEM2_ES365_rcp85 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2060-2099_HadGEM2-ES365__rcp85_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_HadGEM2_ES365_rcp85 = pd.concat([sat1_HadGEM2_ES365_rcp85, sat2_HadGEM2_ES365_rcp85], axis=0, join='outer', ignore_index=False)
# <codecell>
sat1_HadGEM2_ES365_rcp45 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2039-2069_HadGEM2-ES365__rcp45_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat2_HadGEM2_ES365_rcp45 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2069-2099_HadGEM2-ES365__rcp45_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_HadGEM2_ES365_rcp45 = pd.concat([sat1_HadGEM2_ES365_rcp45, sat2_HadGEM2_ES365_rcp45], axis=0, join='outer', ignore_index=False)
# <codecell>
sat1_NorESM1_M_rcp85 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2039-2060_NorESM1-M__rcp85_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat2_NorESM1_M_rcp85 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2060-2099_NorESM1-M__rcp85_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_NorESM1_M_rcp85 = pd.concat([sat1_NorESM1_M_rcp85, sat2_NorESM1_M_rcp85], axis=0, join='outer', ignore_index=False)
# <codecell>
sat1_NorESM1_M_rcp45 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2039-2069_NorESM1-M__rcp45_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat2_NorESM1_M_rcp45 = pd.read_csv('/Users/carina/Desktop/code/SkagitLandslideHazards/saturation_extent_files/Sauk_2069-2099_NorESM1-M__rcp45_TH8-WhiteTH15_mu12.8_cc/saturation_extent.txt', sep='\s+', header=None, names=["time", "sat_value"])
sat_NorESM1_M_rcp45 = pd.concat([sat1_NorESM1_M_rcp45, sat2_NorESM1_M_rcp45], axis=0, join='outer', ignore_index=False)
# <codecell>
def calc_water_year(date):
date = pd.to_datetime(date)
if 10 <= date.month <= 12:
return date.year + 1
else:
return date.year
def calc_water_year_apply(df):
df['water_year'] = df.datetime.apply(lambda row: calc_water_year(row))
# <codecell>
def list_dates(sat_dataframe):
# sat_dataframe = data1
sat_dataframe.time = sat_dataframe.time.apply(pd.to_datetime, dayfirst=False, yearfirst=False)
sat_dataframe.index = sat_dataframe['time']
del sat_dataframe['time']
sat_dataframe['doy']= sat_dataframe.index.dayofyear
sat_dataframe['cal_year'] = sat_dataframe.index.year
sat_dataframe['month'] = sat_dataframe.index.month
sat_dataframe['datetime'] = sat_dataframe.index
#calc_water_year_apply(sat_dataframe)['datetime']
calc_water_year_apply(sat_dataframe)
grouped = sat_dataframe.groupby('water_year')
out_all = []
for name,group in grouped:
a = group.sort_values(by=['sat_value'], ascending=False)
out = a.iloc[0]
out_all.append(out.datetime)
return out_all
# <codecell>
#list_dates_test = list_dates(sat_his)
# <codecell>
def make_list_dates_output(list_dates):
list_ = []
for index in range(len(list_dates)):
date_test = list_dates[index]
date_string = "Map date 1 {} {}".format(index + 1, date_test.to_pydatetime().strftime("%m/%d/%Y-%H"))
# print("Map date {} {}".format(index + 1, date_test.to_pydatetime().strftime("%m/%d/%Y-%H")))
list_.append(date_string)
return list_
# <codecell>
#test for function
#export in text file - historic
temp = list_dates(sat_his)
list_ = make_list_dates_output(temp)
with open('export_historic_dates', 'w') as f:
for item in list_:
f.write("%s\n" % item)
# <codecell>
#find dattes for climate runs
temp_1 = list_dates(sat_CNRM_CM5_rcp85)
list_1= make_list_dates_output(temp_1)
with open('export_dates_sat_CNRM_CM5_rcp85', 'w') as f:
for item in list_1:
f.write("%s\n" % item)
# <codecell>
#find dattes for climate runs
temp_2 = list_dates(sat_CNRM_CM5_rcp45)
list_2= make_list_dates_output(temp_2)
with open('export_dates_sat_CNRM_CM5_rcp45', 'w') as f:
for item in list_2:
f.write("%s\n" % item)
# <codecell>
#find dattes for climate runs
temp_3 = list_dates(sat_HadGEM2_ES365_rcp85)
list_3= make_list_dates_output(temp_3)
with open('export_dates_sat_HadGEM2_ES365_rcp85', 'w') as f:
for item in list_3:
f.write("%s\n" % item)
# <codecell>
#find dattes for climate runs
temp_4 = list_dates(sat_HadGEM2_ES365_rcp45)
list_4= make_list_dates_output(temp_4)
with open('export_dates_sat_HadGEM2_ES365_rcp45', 'w') as f:
for item in list_4:
f.write("%s\n" % item)
# <codecell>
#find dattes for climate runs
temp_5 = list_dates(sat_NorESM1_M_rcp85)
list_5= make_list_dates_output(temp_5)
with open('export_dates_sat_NorESM1_M_rcp85', 'w') as f:
for item in list_5:
f.write("%s\n" % item)
# <codecell>
#find dattes for climate runs
temp_6 = list_dates(sat_NorESM1_M_rcp45)
list_6 = make_list_dates_output(temp_6)
with open('export_dates_sat_NorESM1_M_rcp45', 'w') as f:
for item in list_6:
f.write("%s\n" % item)