We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
INPUT and INITIALIZATION
[STEP 1 Compute the Delta Eddington coeffcients ($\gamma$ values from [1])] #102
Given:
For each layer $n$, do
$$ \begin{align} \gamma_{1n} &= \frac{7 - \omega_0(4+3g_n)}{4} \\ \gamma_{2n} &= -\frac{1 - \omega_0(4-3g_n)}{4} \\ \gamma_{3n} &= \frac{2-3g_n\mu_0}{4} \\ \gamma_{4n} &= 1 - \gamma_{3n} \\ \mu_n &= 0.5 \\ \lambda_n &= \sqrt{\gamma_1^2 - \gamma_2^2} \\ \Gamma_n &= \frac{\gamma_{1n} - \lambda_n}{\gamma_{2n}} \end{align} $$
STEP 2 Define Solar radiation functions : upwards represented as +; downwards -) (#103)
$$ \begin{align} C^+(\tau) &= \frac{\omega_0\pi F_s e^{\frac{-\tau_c+\tau}{\mu_0}}(\frac{\gamma_1 - 1} {\mu_0}\gamma_3+\gamma_4\gamma_2)}{\frac{\lambda^2-1}{\mu_0^2}} \\ C^+(\tau) &= \frac{\omega_0\pi F_s e^{\frac{-\tau_c+\tau}{\mu_0}}(\frac{\gamma_1 + 1} {\mu_0}\gamma_4+\gamma_2\gamma_3)}{\frac{\lambda^2-1}{\mu_0^2}} \end{align} $$
STEP 4 Compute tridiagonal linear system coeffcients. (#103) For each layer $n$, do
$$ \begin{align} e_{1n} &= 1 + \Gamma_n e^{-\lambda_n \tau_n} \\ e_{2n} &= 1 - \Gamma_n e^{-\lambda_n \tau_n} \\ e_{3n} &= \Gamma_n + e^{-\lambda_n \tau_n} \\ e_{4n} &= \Gamma_n - e^{-\lambda_n \tau_n}. \end{align} $$
[STEP 3 Assemble tridiagonal linear system left hand side.] (#103)
lower diagonal
$$ \begin{equation} A_n = \begin{cases} 0 & |first , element \\ e_{2n}e_{3n}-e_{4n}e_{1n} & |n=odd \\ e_{2n+1}e_{1n}-e_{3n}e_{4n+1} & |n=even \\ e_{1n} - R_{\text{sfc}}e_{3n} & |last , element \end{cases} \end{equation} $$
main diagonal
$$ \begin{align} B_n = \begin{cases} e_{11} & |first , element \\ e_{1n}e_{1n+1}-e_{3n}e_{3n+1} & | n=odd \\ e_{2n}e_{2n+1}-e_{4n}e_{4n+1} & | n=even \\ e_{2n} - R_{\text{sfc}}e_{4n} & |last , element \end{cases} \end{align} $$
upper diagonal
$$ \begin{equation} D_n = \begin{cases} -e_{21} & |first , element \\ e_{3n}e_{4n+1}-e_{1n}e_{2n+1} & |n=odd \\ e_{1n+1}e_{4n+1}-e_{1n}e_{2n+1} & |n=even \\ 0 & |last , element \end{cases} \end{equation} $$
NOTE: $e_{2n+1}$ = e[2][n+1].
e[2][n+1]
STEP 4 Assemble tridiagonal system right hand side #103
$$ \begin{equation} E_n = \begin{cases} F_0^-(0) - C_1^-(0) & |first , element \\ e_{3n}[C_{n+1}^+(0) - C_n^+(\tau_n^+)] + e_{1n}[C_n^-(\tau_n) - C_n^-(0)] & |n=odd \\ e_{2n+1}[C_{n+1}^+(0) - C_n^+(\tau_n^+)] + e_{4n+1}[C_{n+1}^-(0) - C_n^-(\tau_n)] & |n=even \\ S_{\text{sfc}} - C_n^+(\tau_n) + R_{\text{sfc}}C_n^-(\tau_n) & |last , element \end{cases} \end{equation} $$
STEP 5 Solve tridiagonal linear system
$$ \begin{equation} \begin{pmatrix} B_1 & D_1 & 0 & 0 & \dots & 0 \\ A_2 & B_2 & D_2 & 0 & \dots & 0 \\ 0 & A_3 & B_3 & D_3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A_n & B_n \end{pmatrix} \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_{2N-1} \\ Y_{2N} \end{pmatrix} = \begin{pmatrix} E_1 \\ E_2 \\ \vdots \\ E_{2N-1} \\ E_2N \end{pmatrix} \end{equation} $$
Solve for $[Y_{1n}, Y_{2n} \cdots Y_{2N-1}, Y_{2N}]^t$
STEP 6 Plug $Y$ back in general solution to compute Flux and Intensity #104
$$ \begin{align} F_n^+ &= Y_{1n} e_{1n} + Y_{2n} e_{2n} + C_n^+( \tau_n ) \\ F_n^- &= Y_{1n} e_{3n} + Y_{2n} e_{4n} + C_n^+( \tau_n ) \\ J_n^+ &= \frac{F^+(\tau)}{ \mu_n} \\ J_n^- &= \frac{F^-(\tau)}{ \mu_n} \end{align} $$
The text was updated successfully, but these errors were encountered:
AdityaDendukuri
mwaxmonsky
No branches or pull requests
Solving Radiative Transfer Equation using Delta Eddington Approximation
INPUT and INITIALIZATION
[STEP 1 Compute the Delta Eddington coeffcients ($\gamma$ values from [1])] #102
Given:
For each layer$n$ , do
STEP 2 Define Solar radiation functions : upwards represented as +; downwards -) (#103)
STEP 4 Compute tridiagonal linear system coeffcients. (#103)$n$ , do
For each layer
[STEP 3 Assemble tridiagonal linear system left hand side.] (#103)
lower diagonal
main diagonal
upper diagonal
STEP 4 Assemble tridiagonal system right hand side #103
STEP 5 Solve tridiagonal linear system
Solve for$[Y_{1n}, Y_{2n} \cdots Y_{2N-1}, Y_{2N}]^t$
STEP 6 Plug$Y$ back in general solution to compute Flux and Intensity #104
The text was updated successfully, but these errors were encountered: