We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
2024-06-20 19:17:37,262 - mmseg - INFO - Set random seed to 2098588967, deterministic: False load from C:/Masterarbeit/burn_scars_Prithvi_100M.pth load checkpoint from local path: C:/Masterarbeit/burn_scars_Prithvi_100M.pth The model and loaded state dict do not match exactly unexpected key in source state_dict: backbone.cls_token, backbone.pos_embed, backbone.patch_embed.proj.weight, backbone.patch_embed.proj.bias, backbone.blocks.0.norm1.weight, backbone.blocks.0.norm1.bias, backbone.blocks.0.attn.qkv.weight, backbone.blocks.0.attn.qkv.bias, backbone.blocks.0.attn.proj.weight, backbone.blocks.0.attn.proj.bias, backbone.blocks.0.norm2.weight, backbone.blocks.0.norm2.bias, backbone.blocks.0.mlp.fc1.weight, backbone.blocks.0.mlp.fc1.bias, backbone.blocks.0.mlp.fc2.weight, backbone.blocks.0.mlp.fc2.bias, backbone.blocks.1.norm1.weight, backbone.blocks.1.norm1.bias, backbone.blocks.1.attn.qkv.weight, backbone.blocks.1.attn.qkv.bias, backbone.blocks.1.attn.proj.weight, backbone.blocks.1.attn.proj.bias, backbone.blocks.1.norm2.weight, backbone.blocks.1.norm2.bias, backbone.blocks.1.mlp.fc1.weight, backbone.blocks.1.mlp.fc1.bias, backbone.blocks.1.mlp.fc2.weight, backbone.blocks.1.mlp.fc2.bias, backbone.blocks.2.norm1.weight, backbone.blocks.2.norm1.bias, backbone.blocks.2.attn.qkv.weight, backbone.blocks.2.attn.qkv.bias, backbone.blocks.2.attn.proj.weight, backbone.blocks.2.attn.proj.bias, backbone.blocks.2.norm2.weight, backbone.blocks.2.norm2.bias, backbone.blocks.2.mlp.fc1.weight, backbone.blocks.2.mlp.fc1.bias, backbone.blocks.2.mlp.fc2.weight, backbone.blocks.2.mlp.fc2.bias, backbone.blocks.3.norm1.weight, backbone.blocks.3.norm1.bias, backbone.blocks.3.attn.qkv.weight, backbone.blocks.3.attn.qkv.bias, backbone.blocks.3.attn.proj.weight, backbone.blocks.3.attn.proj.bias, backbone.blocks.3.norm2.weight, backbone.blocks.3.norm2.bias, backbone.blocks.3.mlp.fc1.weight, backbone.blocks.3.mlp.fc1.bias, backbone.blocks.3.mlp.fc2.weight, backbone.blocks.3.mlp.fc2.bias, backbone.blocks.4.norm1.weight, backbone.blocks.4.norm1.bias, backbone.blocks.4.attn.qkv.weight, backbone.blocks.4.attn.qkv.bias, backbone.blocks.4.attn.proj.weight, backbone.blocks.4.attn.proj.bias, backbone.blocks.4.norm2.weight, backbone.blocks.4.norm2.bias, backbone.blocks.4.mlp.fc1.weight, backbone.blocks.4.mlp.fc1.bias, backbone.blocks.4.mlp.fc2.weight, backbone.blocks.4.mlp.fc2.bias, backbone.blocks.5.norm1.weight, backbone.blocks.5.norm1.bias, backbone.blocks.5.attn.qkv.weight, backbone.blocks.5.attn.qkv.bias, backbone.blocks.5.attn.proj.weight, backbone.blocks.5.attn.proj.bias, backbone.blocks.5.norm2.weight, backbone.blocks.5.norm2.bias, backbone.blocks.5.mlp.fc1.weight, backbone.blocks.5.mlp.fc1.bias, backbone.blocks.5.mlp.fc2.weight, backbone.blocks.5.mlp.fc2.bias, backbone.blocks.6.norm1.weight, backbone.blocks.6.norm1.bias, backbone.blocks.6.attn.qkv.weight, backbone.blocks.6.attn.qkv.bias, backbone.blocks.6.attn.proj.weight, backbone.blocks.6.attn.proj.bias, backbone.blocks.6.norm2.weight, backbone.blocks.6.norm2.bias, backbone.blocks.6.mlp.fc1.weight, backbone.blocks.6.mlp.fc1.bias, backbone.blocks.6.mlp.fc2.weight, backbone.blocks.6.mlp.fc2.bias, backbone.blocks.7.norm1.weight, backbone.blocks.7.norm1.bias, backbone.blocks.7.attn.qkv.weight, backbone.blocks.7.attn.qkv.bias, backbone.blocks.7.attn.proj.weight, backbone.blocks.7.attn.proj.bias, backbone.blocks.7.norm2.weight, backbone.blocks.7.norm2.bias, backbone.blocks.7.mlp.fc1.weight, backbone.blocks.7.mlp.fc1.bias, backbone.blocks.7.mlp.fc2.weight, backbone.blocks.7.mlp.fc2.bias, backbone.blocks.8.norm1.weight, backbone.blocks.8.norm1.bias, backbone.blocks.8.attn.qkv.weight, backbone.blocks.8.attn.qkv.bias, backbone.blocks.8.attn.proj.weight, backbone.blocks.8.attn.proj.bias, backbone.blocks.8.norm2.weight, backbone.blocks.8.norm2.bias, backbone.blocks.8.mlp.fc1.weight, backbone.blocks.8.mlp.fc1.bias, backbone.blocks.8.mlp.fc2.weight, backbone.blocks.8.mlp.fc2.bias, backbone.blocks.9.norm1.weight, backbone.blocks.9.norm1.bias, backbone.blocks.9.attn.qkv.weight, backbone.blocks.9.attn.qkv.bias, backbone.blocks.9.attn.proj.weight, backbone.blocks.9.attn.proj.bias, backbone.blocks.9.norm2.weight, backbone.blocks.9.norm2.bias, backbone.blocks.9.mlp.fc1.weight, backbone.blocks.9.mlp.fc1.bias, backbone.blocks.9.mlp.fc2.weight, backbone.blocks.9.mlp.fc2.bias, backbone.blocks.10.norm1.weight, backbone.blocks.10.norm1.bias, backbone.blocks.10.attn.qkv.weight, backbone.blocks.10.attn.qkv.bias, backbone.blocks.10.attn.proj.weight, backbone.blocks.10.attn.proj.bias, backbone.blocks.10.norm2.weight, backbone.blocks.10.norm2.bias, backbone.blocks.10.mlp.fc1.weight, backbone.blocks.10.mlp.fc1.bias, backbone.blocks.10.mlp.fc2.weight, backbone.blocks.10.mlp.fc2.bias, backbone.blocks.11.norm1.weight, backbone.blocks.11.norm1.bias, backbone.blocks.11.attn.qkv.weight, backbone.blocks.11.attn.qkv.bias, backbone.blocks.11.attn.proj.weight, backbone.blocks.11.attn.proj.bias, backbone.blocks.11.norm2.weight, backbone.blocks.11.norm2.bias, backbone.blocks.11.mlp.fc1.weight, backbone.blocks.11.mlp.fc1.bias, backbone.blocks.11.mlp.fc2.weight, backbone.blocks.11.mlp.fc2.bias, backbone.norm.weight, backbone.norm.bias, neck.fpn1.0.weight, neck.fpn1.0.bias, neck.fpn1.1.ln.weight, neck.fpn1.1.ln.bias, neck.fpn1.3.weight, neck.fpn1.3.bias, neck.fpn2.0.weight, neck.fpn2.0.bias, neck.fpn2.1.ln.weight, neck.fpn2.1.ln.bias, neck.fpn2.3.weight, neck.fpn2.3.bias, decode_head.conv_seg.weight, decode_head.conv_seg.bias, decode_head.convs.0.conv.weight, decode_head.convs.0.bn.weight, decode_head.convs.0.bn.bias, decode_head.convs.0.bn.running_mean, decode_head.convs.0.bn.running_var, decode_head.convs.0.bn.num_batches_tracked, auxiliary_head.conv_seg.weight, auxiliary_head.conv_seg.bias, auxiliary_head.convs.0.conv.weight, auxiliary_head.convs.0.bn.weight, auxiliary_head.convs.0.bn.bias, auxiliary_head.convs.0.bn.running_mean, auxiliary_head.convs.0.bn.running_var, auxiliary_head.convs.0.bn.num_batches_tracked, auxiliary_head.convs.1.conv.weight, auxiliary_head.convs.1.bn.weight, auxiliary_head.convs.1.bn.bias, auxiliary_head.convs.1.bn.running_mean, auxiliary_head.convs.1.bn.running_var, auxiliary_head.convs.1.bn.num_batches_tracked missing keys in source state_dict: cls_token, pos_embed, patch_embed.proj.weight, patch_embed.proj.bias, blocks.0.norm1.weight, blocks.0.norm1.bias, blocks.0.attn.qkv.weight, blocks.0.attn.qkv.bias, blocks.0.attn.proj.weight, blocks.0.attn.proj.bias, blocks.0.norm2.weight, blocks.0.norm2.bias, blocks.0.mlp.fc1.weight, blocks.0.mlp.fc1.bias, blocks.0.mlp.fc2.weight, blocks.0.mlp.fc2.bias, blocks.1.norm1.weight, blocks.1.norm1.bias, blocks.1.attn.qkv.weight, blocks.1.attn.qkv.bias, blocks.1.attn.proj.weight, blocks.1.attn.proj.bias, blocks.1.norm2.weight, blocks.1.norm2.bias, blocks.1.mlp.fc1.weight, blocks.1.mlp.fc1.bias, blocks.1.mlp.fc2.weight, blocks.1.mlp.fc2.bias, blocks.2.norm1.weight, blocks.2.norm1.bias, blocks.2.attn.qkv.weight, blocks.2.attn.qkv.bias, blocks.2.attn.proj.weight, blocks.2.attn.proj.bias, blocks.2.norm2.weight, blocks.2.norm2.bias, blocks.2.mlp.fc1.weight, blocks.2.mlp.fc1.bias, blocks.2.mlp.fc2.weight, blocks.2.mlp.fc2.bias, blocks.3.norm1.weight, blocks.3.norm1.bias, blocks.3.attn.qkv.weight, blocks.3.attn.qkv.bias, blocks.3.attn.proj.weight, blocks.3.attn.proj.bias, blocks.3.norm2.weight, blocks.3.norm2.bias, blocks.3.mlp.fc1.weight, blocks.3.mlp.fc1.bias, blocks.3.mlp.fc2.weight, blocks.3.mlp.fc2.bias, blocks.4.norm1.weight, blocks.4.norm1.bias, blocks.4.attn.qkv.weight, blocks.4.attn.qkv.bias, blocks.4.attn.proj.weight, blocks.4.attn.proj.bias, blocks.4.norm2.weight, blocks.4.norm2.bias, blocks.4.mlp.fc1.weight, blocks.4.mlp.fc1.bias, blocks.4.mlp.fc2.weight, blocks.4.mlp.fc2.bias, blocks.5.norm1.weight, blocks.5.norm1.bias, blocks.5.attn.qkv.weight, blocks.5.attn.qkv.bias, blocks.5.attn.proj.weight, blocks.5.attn.proj.bias, blocks.5.norm2.weight, blocks.5.norm2.bias, blocks.5.mlp.fc1.weight, blocks.5.mlp.fc1.bias, blocks.5.mlp.fc2.weight, blocks.5.mlp.fc2.bias, blocks.6.norm1.weight, blocks.6.norm1.bias, blocks.6.attn.qkv.weight, blocks.6.attn.qkv.bias, blocks.6.attn.proj.weight, blocks.6.attn.proj.bias, blocks.6.norm2.weight, blocks.6.norm2.bias, blocks.6.mlp.fc1.weight, blocks.6.mlp.fc1.bias, blocks.6.mlp.fc2.weight, blocks.6.mlp.fc2.bias, blocks.7.norm1.weight, blocks.7.norm1.bias, blocks.7.attn.qkv.weight, blocks.7.attn.qkv.bias, blocks.7.attn.proj.weight, blocks.7.attn.proj.bias, blocks.7.norm2.weight, blocks.7.norm2.bias, blocks.7.mlp.fc1.weight, blocks.7.mlp.fc1.bias, blocks.7.mlp.fc2.weight, blocks.7.mlp.fc2.bias, blocks.8.norm1.weight, blocks.8.norm1.bias, blocks.8.attn.qkv.weight, blocks.8.attn.qkv.bias, blocks.8.attn.proj.weight, blocks.8.attn.proj.bias, blocks.8.norm2.weight, blocks.8.norm2.bias, blocks.8.mlp.fc1.weight, blocks.8.mlp.fc1.bias, blocks.8.mlp.fc2.weight, blocks.8.mlp.fc2.bias, blocks.9.norm1.weight, blocks.9.norm1.bias, blocks.9.attn.qkv.weight, blocks.9.attn.qkv.bias, blocks.9.attn.proj.weight, blocks.9.attn.proj.bias, blocks.9.norm2.weight, blocks.9.norm2.bias, blocks.9.mlp.fc1.weight, blocks.9.mlp.fc1.bias, blocks.9.mlp.fc2.weight, blocks.9.mlp.fc2.bias, blocks.10.norm1.weight, blocks.10.norm1.bias, blocks.10.attn.qkv.weight, blocks.10.attn.qkv.bias, blocks.10.attn.proj.weight, blocks.10.attn.proj.bias, blocks.10.norm2.weight, blocks.10.norm2.bias, blocks.10.mlp.fc1.weight, blocks.10.mlp.fc1.bias, blocks.10.mlp.fc2.weight, blocks.10.mlp.fc2.bias, blocks.11.norm1.weight, blocks.11.norm1.bias, blocks.11.attn.qkv.weight, blocks.11.attn.qkv.bias, blocks.11.attn.proj.weight, blocks.11.attn.proj.bias, blocks.11.norm2.weight, blocks.11.norm2.bias, blocks.11.mlp.fc1.weight, blocks.11.mlp.fc1.bias, blocks.11.mlp.fc2.weight, blocks.11.mlp.fc2.bias, norm.weight, norm.bias
Config file:
import os custom_imports = dict(imports=["geospatial_fm"]) # base options dist_params = dict(backend="nccl") log_level = "INFO" load_from = None resume_from = None cudnn_benchmark = True dataset_type = "GeospatialDataset" # TO BE DEFINED BY USER: data directory data_root = "C:/Masterarbeit/hls-foundation-os/hls_burn_scars" num_frames = 1 img_size = 224 num_workers = 4 samples_per_gpu = 4 img_norm_cfg = dict( means=[ 0.033349706741586264, 0.05701185520536176, 0.05889748132001316, 0.2323245113436119, 0.1972854853760658, 0.11944914225186566, ], stds=[ 0.02269135568823774, 0.026807560223070237, 0.04004109844362779, 0.07791732423672691, 0.08708738838140137, 0.07241979477437814, ], ) # change the mean and std of all the bands bands = [0, 1, 2, 3, 4, 5] tile_size = 224 orig_nsize = 512 crop_size = (tile_size, tile_size) img_suffix = "_merged.tif" seg_map_suffix = ".mask.tif" ignore_index = -1 image_nodata = -9999 image_nodata_replace = 0 image_to_float32 = True # model # TO BE DEFINED BY USER: model path pretrained_weights_path = "C:/Masterarbeit/burn_scars_Prithvi_100M.pth" num_layers = 12 patch_size = 16 embed_dim = 768 num_heads = 12 tubelet_size = 1 output_embed_dim = num_frames * embed_dim max_intervals = 10000 evaluation_interval = 1000 # TO BE DEFINED BY USER: model path experiment = "TEST" project_dir = "C:\Masterarbeit" work_dir = os.path.join(project_dir, experiment) save_path = work_dir save_path = work_dir train_pipeline = [ dict(type="LoadGeospatialImageFromFile", to_float32=image_to_float32), dict(type="LoadGeospatialAnnotations", reduce_zero_label=False), dict(type="BandsExtract", bands=bands), dict(type="RandomFlip", prob=0.5), dict(type="ToTensor", keys=["img", "gt_semantic_seg"]), # to channels first dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), dict(type="TorchNormalize", **img_norm_cfg), dict(type="TorchRandomCrop", crop_size=(tile_size, tile_size)), dict( type="Reshape", keys=["img"], new_shape=(len(bands), num_frames, tile_size, tile_size), ), dict(type="Reshape", keys=["gt_semantic_seg"], new_shape=(1, tile_size, tile_size)), dict(type="CastTensor", keys=["gt_semantic_seg"], new_type="torch.LongTensor"), dict(type="Collect", keys=["img", "gt_semantic_seg"]), ] test_pipeline = [ dict(type="LoadGeospatialImageFromFile", to_float32=image_to_float32), dict(type="BandsExtract", bands=bands), dict(type="ToTensor", keys=["img"]), # to channels first dict(type="TorchPermute", keys=["img"], order=(2, 0, 1)), dict(type="TorchNormalize", **img_norm_cfg), dict( type="Reshape", keys=["img"], new_shape=(len(bands), num_frames, -1, -1), look_up=dict({"2": 1, "3": 2}), ), dict(type="CastTensor", keys=["img"], new_type="torch.FloatTensor"), dict( type="CollectTestList", keys=["img"], meta_keys=[ "img_info", "seg_fields", "img_prefix", "seg_prefix", "filename", "ori_filename", "img", "img_shape", "ori_shape", "pad_shape", "scale_factor", "img_norm_cfg", ], ), ] CLASSES = ("Unburnt land", "Burn scar") data = dict( samples_per_gpu=samples_per_gpu, workers_per_gpu=num_workers, train=dict( type=dataset_type, CLASSES=CLASSES, data_root=data_root, img_dir="training", ann_dir="training", img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, pipeline=train_pipeline, ignore_index=-1, ), val=dict( type=dataset_type, CLASSES=CLASSES, data_root=data_root, img_dir="validation", ann_dir="validation", img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, pipeline=test_pipeline, ignore_index=-1, ), test=dict( type=dataset_type, CLASSES=CLASSES, data_root=data_root, img_dir="validation", ann_dir="validation", img_suffix=img_suffix, seg_map_suffix=seg_map_suffix, pipeline=test_pipeline, ignore_index=-1, ), ) optimizer = dict(type="Adam", lr=1.3e-05, betas=(0.9, 0.999)) optimizer_config = dict(grad_clip=None) lr_config = dict( policy="poly", warmup="linear", warmup_iters=1500, warmup_ratio=1e-06, power=1.0, min_lr=0.0, by_epoch=False, ) log_config = dict( interval=20, hooks=[ dict(type="TextLoggerHook", by_epoch=False), dict(type="TensorboardLoggerHook", by_epoch=False), ], ) checkpoint_config = dict(by_epoch=True, interval=10, out_dir=save_path) evaluation = dict( interval=evaluation_interval, metric="mIoU", pre_eval=True, save_best="mIoU", by_epoch=False, ) loss_func = dict(type="DiceLoss", use_sigmoid=False, loss_weight=1, ignore_index=-1) runner = dict(type="IterBasedRunner", max_iters=max_intervals) workflow = [("train", 1)] norm_cfg = dict(type="BN", requires_grad=True) model = dict( type="TemporalEncoderDecoder", frozen_backbone=False, backbone=dict( type="TemporalViTEncoder", pretrained=pretrained_weights_path, img_size=img_size, patch_size=patch_size, num_frames=num_frames, tubelet_size=tubelet_size, in_chans=len(bands), embed_dim=embed_dim, depth=12, num_heads=num_heads, mlp_ratio=4.0, norm_pix_loss=False, ), neck=dict( type="ConvTransformerTokensToEmbeddingNeck", embed_dim=embed_dim * num_frames, output_embed_dim=output_embed_dim, drop_cls_token=True, Hp=14, Wp=14, ), decode_head=dict( num_classes=len(CLASSES), in_channels=output_embed_dim, type="FCNHead", in_index=-1, channels=256, num_convs=1, concat_input=False, dropout_ratio=0.1, norm_cfg=dict(type="BN", requires_grad=True), align_corners=False, loss_decode=loss_func, ), auxiliary_head=dict( num_classes=len(CLASSES), in_channels=output_embed_dim, type="FCNHead", in_index=-1, channels=256, num_convs=2, concat_input=False, dropout_ratio=0.1, norm_cfg=dict(type="BN", requires_grad=True), align_corners=False, loss_decode=loss_func, ), train_cfg=dict(), test_cfg=dict( mode="slide", stride=(int(tile_size / 2), int(tile_size / 2)), crop_size=(tile_size, tile_size), ), ) auto_resume = False
I followed the instruction on README. I got this error (tried with Prithvi_100M.pt, also the same thing). What did I do wrong? Thanks
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Config file:
I followed the instruction on README. I got this error (tried with Prithvi_100M.pt, also the same thing). What did I do wrong? Thanks
The text was updated successfully, but these errors were encountered: