-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path2017Sum_GSFC_ChesapeakeBayEco_DraftCode1.txt
148 lines (115 loc) · 6.37 KB
/
2017Sum_GSFC_ChesapeakeBayEco_DraftCode1.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
// GEE Script: Wetland_Classification_DEVELOP
// Team: Chesapeake Bay Ecological Forecasting - Goddard Space Flight Center
// Date: Summer 2017
// Contact: John Fitz - [email protected] or [email protected]
// Description: This GEE script performs an unsupervised classification to determine wetland extent
// Usage: This code is scripted in JavaScript to be run in the code editor of Google Earth Engine.
// The script requires some inputs for Marsh Mask, as well as the operator to hand select classes
// from the classified map and add them to the script for the creation of the marsh extent layer.
// Additional date and dataset selection must also occur to find marsh extent for different years (future drafts will include this)
// Parameters:
// In: SRTM, L8, L8toa, L8rs, sentinel1, CB polygon for study area, MDmarshes raster mask,
// Out: Several layers to be added to GEE Map visualization, exported marsh extent maps and statistics (eventually)
// Script Imports
var SRTM = ee.Image("USGS/SRTMGL1_003"),
L8 = ee.ImageCollection("LANDSAT/LC8_SR"),
L8toa = ee.ImageCollection("LANDSAT/LC8_L1T_TOA"),
L8rs = ee.ImageCollection("LANDSAT/LC8_L1T"),
sentinel = ee.ImageCollection("COPERNICUS/S1_GRD"),
countries = ee.FeatureCollection("USDOS/LSIB/2013"),
CB = /* color: #d63000 */ee.Geometry.Polygon(
[[[-76.1572265625, 39.76491812800949],
[-76.893310546875, 39.205300346969246],
[-77.84912109375, 38.65834825141966],
[-76.717529296875, 36.70219191643146],
[-75.56396484375, 36.86057804436293],
[-74.7509765625, 38.297122431868644],
[-74.520263671875, 39.06895788361021],
[-75.179443359375, 39.59581266660509],
[-75.6298828125, 39.790248224517754]]]);
var MDmarshes = ee.Image('users/johnfitz058/mmppiRas21') //new raster mask
var marshes = ee.Image('users/johnfitz058/mmppi_raster')
var marshes = marshes.mask(marshes.neq(65535))
Map.addLayer(marshes,{},'MD Marshes')
// Height Mask from SRTM DEM (2000)
var srtm = SRTM.lt(50)//.clip(geometry8) ;
Map.addLayer(srtm,{min:0,max:50},'SRTM Mask',false)
// //#####################################
// SELECT AOI - a simple polygon capturing the entire Chesapeake Bay Watershed
var aoi = CB;
// Sort through radar data
var radar = sentinel.filterDate('2016-01-01','2017-01-01')//.filterBounds(geometry)
.filter(ee.Filter.gt('VH_log_bias', 0))
// Select max value over the time period
var radar = radar.max()//.mask(srtm)
// New Bands: VH and VV
var radar = radar.select('VH','VV')
var radwater = radar.lt(-16)
// New Band: Radar VV divided by VH
var radar1 = radar.select('VV').divide(radar.select('VH')).rename('VVVH')
Map.addLayer(radar1,{},'radar ration VV/VH',false)
// CREATE addIndex Function
// This function maps out various band indices for Landsat 8 (indices for vegetation, water, (and soil in future))
var addIndex = function(img){
var ndvi = img.normalizedDifference(['B5','B4']).rename('ndvi');
var ndwi = img.normalizedDifference(['B5','B6']).rename('ndwi');
var ndwbi = img.normalizedDifference(['B3','B5']).rename('ndwbi');
// Band ratios: reference Green, E.P.; Clark, C.D.; Mumby, P.J.; Edwards, A.J.;
// Ellis, A.C. Remote sensing techniques for mangrove mapping. Int. J. Remote
// Sens. 1998, 19, 935–956.
var ratio54 = img.select('B6').divide(img.select('B5')).rename('r54');
var ratio35 = img.select('B4').divide(img.select('B6')).rename('r35');
return img.addBands(ndvi).addBands(ndwi).addBands(ndwbi).addBands(ratio54).addBands(ratio35)//.mask(srtmmask)
}
// Filter Landsat 8 data for the period of interest (2016-2017)
var newcol = L8toa.filterDate('2016-01-01', '2017-01-01')
.select("B2","B3","B4","B5","B6","B7","B8","B9")
.map(addIndex)
// New Bands: Calculate NDVI StdDev and mean for time period
var ndvisd = newcol.select('ndvi').reduce(ee.Reducer.stdDev()).rename('StdDev')
var ndvi_mean = newcol.select('ndvi').reduce(ee.Reducer.mean()).rename('mean')
var ndvi_watermask = ndvi_mean.gt(0)
Map.addLayer(ndvi_watermask,{},'NDVI Mean',false)
// Creat Quality Composite using NDVI and add additional bands
// Additional Bands: Optical indices, StdDev, VV, VH, and VV/VH
var composite = newcol.qualityMosaic('ndvi').addBands(ndvisd).addBands(radar).addBands(radar1).addBands(srtm)
var composite = composite.mask(srtm)
var composite = composite.mask(ndvi_watermask)
Map.addLayer(composite,{},'composite',false)
// Define a region in which to generate a sample of the input.
var region = aoi;
var input = composite; // input image
// Display the sample region.
Map.centerObject(aoi,10);
Map.addLayer(ee.Image().paint(region, 0, 2), {}, 'region',false);
// Make the training dataset.
var training = input.sample({
region: region,
scale: 30,
numPixels: 5000
});
// Instantiate the clusterer and train it.
var numclass = 50; // number of classes
var clusterer = ee.Clusterer.wekaKMeans(numclass).train(training);
// Cluster the input using the trained clusterer.
var result = input.cluster(clusterer);
// Smoothing filter
var mode = result.focal_mode(100,'square','meters')
Map.addLayer(mode.randomVisualizer(), {}, 'classification clusters mode',false);
// Classification results
// for the test variable, find the number of the classes that you want to join
// and add them to the list. Requires operator to select class value number to add for selection
// and merging of the wetland pixels (continue adding '.add(image.eq())' once all are selected.
var image = mode.mask(ndvi_watermask)
var test = image.eq(47)
.add(image.eq(10))
.add(image.eq(17))
// .add(image.eq(5))
.add(image.eq(49))
// .add(image.eq(29))
// .add(image.eq(1))
var test =test.mask(test)
// Display the clusters with random colors.
Map.addLayer(result.randomVisualizer(), {band:'cluster'}, 'classification clusters',false);
// Display the merged classes, which represents the classified marsh extent
Map.addLayer(test,{palette: '#0aff08'} , 'merging of classes');