forked from smw1414/circlncRNAnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeseq2.r
executable file
·281 lines (230 loc) · 14 KB
/
deseq2.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#!/usr/bin/env Rscript
#######################################################
# Differential expression analysis module using DESeq2#
#######################################################
args=commandArgs(TRUE)
library("getopt")
spec <- matrix(c(
'rawreads', 'r', 1, "character", "gene raw reads table (required)
\ngene\tSamples1 Sample2\nGene1\t23\t234\nGene2\t565\t23\n",
'factorlist' , 'f', 1, "character", "factor list, no header required, at least 3 reaplicates for each condition, place the reference condition to the top of list (required)
\nSample1\tNormal <--- reference condition\nSample2\tNormal\nSample3\tTumor\nSample4\tTumor\n",
'core' , 'c', 2, "numeric","Number of cores for computation",
'annotation' , 'a', 2, "character", "-a gencodev25, -a gencodev19 (required)",
'circmatrix' , 'i', 2, "character","circRNA raw reads table",
'mode' , 'm', 2, "character", "lnc for lncRNA correlation, circ for circRNA correlation (required)"
),ncol=5,byrow=T)
opt = getopt(spec);
if ( is.null(opt$mode)) {
cat(paste(getopt(spec, usage=T),"\nExample ./deseq2.r -r count_matrix.txt -f count_matrix_conditon.txt -m lnc -a gencodev25
Example ./deseq2.r -r count_matrix_circ.txt -f factor_OSCC_Rseq_circrna.txt -m lnc -a gencodev19
Example ./deseq2.r -r OSCC_circRNA_raw2.txt -f factor_OSCC_Rseq_circrna.txt -m circ -a gencodev19
DEMO DATA CMD CIRCRNA ./deseq2.r -r encode_example_Gene_raw_read_count_casted.txt -i encode_example_circRNA_raw_read_count_casted.txt -f encode_example_circRNA_condition.txt -m circ -a gencodev25
DEMO DATA CMD LNCRNA ./deseq2.r -r TCGA_COADREAD_GENCODEV25_raw_read_count.txt -f TCGA_COADREAD_GENCODEV25_condition.txt -m lnc -a gencodev25 -c 6
DEMO DATA CMD TCGA ./deseq2.r -m TCGA-COAD \n"));
q();
}
# define default value
if ( is.null(opt$core ) ) { opt$core = 4 }
library("data.table")
#library("DESeq2")
library("S4Vectors")
library("factoextra")
#library("BiocParallel")
#library("reshape2")
#read table and factor
ann<-opt$annotation[1]
mode<-opt$mode[1]
TCGA_folder<-"tcga"
TCGA_df<-data.frame(rds=system(paste0("ls ",TCGA_folder,"/deseq_list*TCGA*rds"),intern = T))
TCGA_df$cancer<-gsub(".*(TCGA.*)\\.rds","\\1",TCGA_df$rds)
if (!(mode %like% "TCGA-")){
if (ann=="gencodev25" ) {
gencodev25_sym_id<-readRDS("gencodev25_sym_id.rds")
symbol_id<-gencodev25_sym_id[["symbol_id"]]
lncRNA_symbol_id<-gencodev25_sym_id[["lncRNA_symbol_id"]]
coding_symbol_id<-gencodev25_sym_id[["coding_symbol_id"]]
}
if (ann=="gencodev19" ) {
gencodev25_sym_id<-readRDS("gencodev19_sym_id.rds")
symbol_id<-gencodev25_sym_id[["symbol_id"]]
lncRNA_symbol_id<-gencodev25_sym_id[["lncRNA_symbol_id"]]
coding_symbol_id<-gencodev25_sym_id[["coding_symbol_id"]]
}
}
# pca analysis
pca<-function(input,condition,output){
gene_profile=data.table(input)
cols<-colnames(gene_profile)[2:ncol(gene_profile)]
gene_profile[,(cols):=lapply(.SD, function(x) {log2(as.numeric(x)+1)}), .SDcols = cols]
gene_profile=dcast.data.table(melt(gene_profile, id.vars = "gene",variable.name = "sample"), sample ~ gene)
sample_condition=condition
colnames(sample_condition)=c("sample","group")
gene_profile=merge(gene_profile,sample_condition,all.x=T,by="sample")
gene_profile_pca= prcomp(gene_profile[,-c(1,ncol(gene_profile)),with=F],scale=TRUE)
png("output/pca.png")
p<-fviz_pca_ind(gene_profile_pca, geom = "point",
habillage=gene_profile$group, addEllipses=TRUE,
ellipse.level= 0.95)+scale_color_manual(values=c('#0C4B8E','#BF382A'))+scale_fill_manual(values=c("#3BBDF9","#F9713B"))+theme_minimal()
print(p)
dev.off()
pca=as.data.frame(gene_profile_pca$x)
pca$group=gene_profile$group
pca$sample=gene_profile$sample
write.table(pca,output,quote=F,row.names=F,sep="\t")
}
# for lncRNA differential expression analysis
if (mode=="lnc") {
rawreads <- as.data.frame(data.table::fread(opt$rawreads[1],stringsAsFactors = F))
factor_list <- as.data.frame(data.table::fread(opt$factorlist[1], header=FALSE))
factor_list$V2<-as.factor(factor_list$V2 )
# table check
if ( length(setdiff(colnames(rawreads[,2:ncol(rawreads)]),factor_list$V1))!=0 ){
system("echo Unmacthed sample names "); q();}
if ( length(unique(factor_list$V2)) != 2 ){
system("echo Only support 2 levels factor "); q(); }
if ( length(factor_list$V2[grep(levels(factor_list$V2)[1],factor_list$V2)]) <3 &
length(factor_list$V2[grep(levels(factor_list$V2)[2],factor_list$V2)]) <3 ) {
system("echo Not enought replicates "); q(); }
# conver gene_id to symbol
symbol_id$id<-gsub("\\..*","",symbol_id$id)
rawreads[,1]<-gsub("\\..*","",rawreads[,1])
rawreads<-merge(symbol_id,rawreads,by.x="id",by.y=colnames(rawreads)[1])
rawreads$id<-NULL
# sum the reads for each gene symbol
rawreads_melt <- data.table::data.table(reshape2::melt(rawreads, id = "symbol"))
rawreads<-data.table::dcast.data.table(rawreads_melt, symbol ~ variable, sum)
countsTable <- as.data.frame(rawreads)
names(countsTable)[1]<-"Geneid"
rownames(countsTable)<-countsTable$Geneid
countsTable$Geneid<-NULL
countsTable<-round(as.matrix(countsTable))
if (!is.numeric(countsTable)){ system("echo Data matrix contains non-numeric "); q(); }
# set the base reference
deseq_factor<-factor(factor_list[order(match(factor_list$V1,colnames(countsTable))), ]$V2)
deseq_factor<-factor(deseq_factor, levels=c(levels(deseq_factor)[grep(as.character(factor_list$V2[1]),levels(deseq_factor))], # Tvs N or NvsT
levels(deseq_factor)[-grep(as.character(factor_list$V2[1]),levels(deseq_factor))]))
colData<-data.frame(row.names=colnames(countsTable),condition=deseq_factor)
# differential expression
dds<-DESeq2::DESeqDataSetFromMatrix(countsTable,colData, ~condition)
dds <- dds[ rowSums(DESeq2::counts(dds)) > 1, ]
BiocParallel::register( BiocParallel::MulticoreParam(opt$core))
minreplicates<-min(length(factor_list[factor_list$V2 %in% levels(factor_list$V2)[1],]$V1),
length(factor_list[factor_list$V2 %in% levels(factor_list$V2)[2],]$V1))
dds<-DESeq2::DESeq(dds, parallel = T)
res <- DESeq2::results(dds, parallel = T)
res_tab<-as.data.frame(res)
# condition mean reads
system("echo condition mean reads")
deseq_norm_reads<-as.data.frame(DESeq2::counts(dds,normalized=TRUE))
level_1<-apply(deseq_norm_reads[,colnames(deseq_norm_reads) %in%
factor_list[factor_list$V2 %in% levels(factor_list$V2)[1],]$V1],1,mean)
level_2<-apply(deseq_norm_reads[,colnames(deseq_norm_reads) %in%
factor_list[factor_list$V2 %in% levels(factor_list$V2)[2],]$V1],1,mean)
mean_reads<-data.frame(level_1,level_2)
colnames(mean_reads)<-c(paste0(levels(factor_list$V2)[1]," BaseMean"),paste0(levels(factor_list$V2)[2]," BaseMean"))
res_tab<-merge(res_tab,mean_reads, by='row.names')[,c(1,3,6,7,2,8,9)]
colnames(res_tab)[1]<-"gene"
write.table(res_tab[res_tab$gene %in% lncRNA_symbol_id$symbol,], file="output/DEGs_lncRNA.txt",sep = '\t', row.names = F,quote = F)
write.table(res_tab, file="output/DEGs.txt",sep = '\t', row.names = F,quote = F)
deseq_norm_reads$gene<-rownames(deseq_norm_reads)
# normalized all gene table
deseq_norm_reads<-deseq_norm_reads[,c(ncol(deseq_norm_reads),1:ncol(deseq_norm_reads)-1)]
write.table(deseq_norm_reads, file="output/norm_readstable.txt",sep = '\t', row.names = F,quote = F)
# normalized lnc gene table
deseq_norm_reads_lnc<-deseq_norm_reads[rownames(deseq_norm_reads) %in% lncRNA_symbol_id$symbol,]
write.table(deseq_norm_reads_lnc, file="output/norm_readstable_lncRNA.txt",sep = '\t', row.names = F,quote = F)
# coding gene
deseq_norm_reads_coding<-deseq_norm_reads[rownames(deseq_norm_reads) %in% coding_symbol_id$symbol,]
write.table(deseq_norm_reads_coding, file="output/norm_readstable_coding_gene.txt",sep = '\t', row.names = F,quote = F)
pca(deseq_norm_reads,factor_list,"output/pca.txt")
}
# for circRNA differential expression analysis
if (mode=="circ") {
factor_list <- as.data.frame(data.table::fread(opt$factorlist[1], header=FALSE))
factor_list$V2<-as.factor(factor_list$V2 )
# loading gene reads counts
rawreads <- as.data.frame(data.table::fread(opt$rawreads[1],stringsAsFactors = F))
symbol_id$id<-gsub("\\..*","",symbol_id$id)
rawreads[,1]<-gsub("\\..*","",rawreads[,1])
rawreads<-merge(symbol_id,rawreads,by.x="id",by.y=colnames(rawreads)[1])
rawreads$id<-NULL
rawreads_melt <- data.table::data.table(reshape2::melt(rawreads, id = "symbol"))
rawreads<-as.data.frame(data.table::dcast.data.table(rawreads_melt, symbol ~ variable, sum))
rawreads<-reshape2::melt(rawreads)
# loading circRNA read counts
circmatrix <- as.data.frame(data.table::fread(opt$circmatrix[1],stringsAsFactors = F))
circname<-circmatrix[,1] # load circRNA id from first col
circmatrix<-reshape2::melt(circmatrix)
colnames(circmatrix)[1]<-colnames(rawreads)[1]
# merge for combined normalization
rawreads<-rbind(rawreads,circmatrix)
rawreads<-reshape2::dcast(rawreads,symbol~variable,sum)
# table check
if ( length(setdiff(colnames(rawreads[,2:ncol(rawreads)]),factor_list$V1))!=0 ){
system("echo Unmacthed sample names "); q();}
if ( length(unique(factor_list$V2)) != 2 ){
system("echo Only support 2 levels factor "); q(); }
if ( length(factor_list$V2[grep(levels(factor_list$V2)[1],factor_list$V2)]) <3 &
length(factor_list$V2[grep(levels(factor_list$V2)[2],factor_list$V2)]) <3 ) {
system("echo Not enought replicates "); q(); }
countsTable <- as.data.frame(rawreads)
names(countsTable)[1]<-"Geneid"
rownames(countsTable)<-countsTable$Geneid
countsTable$Geneid<-NULL
countsTable<-round(as.matrix(countsTable))
if (!is.numeric(countsTable)){ system("echo Data matrix contains non-numeric "); q(); }
deseq_factor<-factor(factor_list[order(match(factor_list$V1,colnames(countsTable))), ]$V2)
deseq_factor<-factor(deseq_factor, levels=c(levels(deseq_factor)[grep(as.character(factor_list$V2[1]),levels(deseq_factor))], # Tvs N or NvsT
levels(deseq_factor)[-grep(as.character(factor_list$V2[1]),levels(deseq_factor))]))
colData<-data.frame(row.names=colnames(countsTable),condition=deseq_factor)
dds<-DESeq2::DESeqDataSetFromMatrix(countsTable,colData, ~condition)
dds <- dds[ rowSums(DESeq2::counts(dds)) > 1, ]
BiocParallel::register(BiocParallel::MulticoreParam(opt$core))
minreplicates<-min(length(factor_list[factor_list$V2 %in% levels(factor_list$V2)[1],]$V1),
length(factor_list[factor_list$V2 %in% levels(factor_list$V2)[2],]$V1))
dds<-DESeq2::DESeq(dds, parallel = T)
res <- DESeq2::results(dds, parallel = T)
res_tab<-as.data.frame(res)
# condition mean reads
system("echo condition mean reads")
deseq_norm_reads<-as.data.frame(DESeq2::counts(dds,normalized=TRUE))
level_1<-apply(deseq_norm_reads[,colnames(deseq_norm_reads) %in%
factor_list[factor_list$V2 %in% levels(factor_list$V2)[1],]$V1],1,mean)
level_2<-apply(deseq_norm_reads[,colnames(deseq_norm_reads) %in%
factor_list[factor_list$V2 %in% levels(factor_list$V2)[2],]$V1],1,mean)
mean_reads<-data.frame(level_1,level_2)
colnames(mean_reads)<-c(paste0(levels(factor_list$V2)[1]," BaseMean"),paste0(levels(factor_list$V2)[2]," BaseMean"))
res_tab<-merge(res_tab,mean_reads, by='row.names')[,c(1,3,6,7,2,8,9)]
colnames(res_tab)[1]<-"gene"
#write.table(res_tab[res_tab$gene %in% lncRNA_symbol_id$symbol,], file="DEGs_circRNA.txt",sep = '\t', row.names = F,quote = F)
write.table(res_tab[ res_tab$gene %in% circname,], file="output/DEGs_circRNA.txt",sep = '\t', row.names = F,quote = F)
deseq_norm_reads$gene<-rownames(deseq_norm_reads)
deseq_norm_reads<-deseq_norm_reads[,c(ncol(deseq_norm_reads),1:ncol(deseq_norm_reads)-1)]
write.table(deseq_norm_reads[deseq_norm_reads$gene %in% circname,], file="output/norm_readstable_circRNA.txt",sep = '\t', row.names = F,quote = F)
write.table(deseq_norm_reads[!deseq_norm_reads$gene %in% circname,], file="output/norm_readstable.txt",sep = '\t', row.names = F,quote = F)
# normalized lnc gene table
deseq_norm_reads_lnc<-deseq_norm_reads[rownames(deseq_norm_reads) %in% lncRNA_symbol_id$symbol,]
write.table(deseq_norm_reads_lnc, file="output/norm_readstable_lncRNA.txt",sep = '\t', row.names = F,quote = F)
# coding gene
deseq_norm_reads_coding<-deseq_norm_reads[rownames(deseq_norm_reads) %in% coding_symbol_id$symbol,]
write.table(deseq_norm_reads_coding, file="output/norm_readstable_coding_gene.txt",sep = '\t', row.names = F,quote = F)
pca(deseq_norm_reads[deseq_norm_reads$gene %in% circname,],factor_list,"output/pca.txt")
}
# TCGA datasets output
if (mode %like% "TCGA-") {
message("opening TCGA deseq2 result")
tcga.rds.path<-as.character(TCGA_df[ TCGA_df$cancer == mode,]$rds)
tcga.deseq.res<-readRDS(tcga.rds.path)
message("writing TCGA deseq2 result")
factor_list<-data.frame(V1=names(tcga.deseq.res[[ "norm_readstable" ]][2:ncol(tcga.deseq.res[[ "norm_readstable" ]])]))
factor_list$V2<-ifelse(substr(factor_list$V1,14,14) >=1,"N","T")
write.table(factor_list, file="count_matrix_condition.txt",sep = '\t', row.names = F,quote = F,col.names = F)
write.table(tcga.deseq.res[[ "DEGs_lncRNA" ]], file="output/DEGs_lncRNA.txt",sep = '\t', row.names = F,quote = F)
write.table(tcga.deseq.res[[ "DEGs" ]], file="output/DEGs.txt",sep = '\t', row.names = F,quote = F)
write.table(tcga.deseq.res[[ "norm_readstable" ]], file="output/norm_readstable.txt",sep = '\t', row.names = F,quote = F)
write.table(tcga.deseq.res[[ "norm_readstable_lncRNA" ]], file="output/norm_readstable_lncRNA.txt",sep = '\t', row.names = F,quote = F)
write.table(tcga.deseq.res[[ "norm_readstable_coding_gene" ]], file="output/norm_readstable_coding_gene.txt",sep = '\t', row.names = F,quote = F)
message("processing PCA")
pca(tcga.deseq.res[[ "norm_readstable" ]],factor_list,"output/pca.txt")
}