forked from smw1414/circlncRNAnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorrelation.r
executable file
·930 lines (751 loc) · 49 KB
/
correlation.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
#!/usr/bin/env Rscript
args=commandArgs(TRUE)
library(getopt)
# 1=required argument;2=optional argument
spec <- matrix(c(
'normreads', 'n', 2, "character", "normalized reads table (required)",
'factorlist' , 'f', 2, "character", "factor list (required)",
'circRNA' , 'c', 2, "character", "circRNA normalized reas table (optional)",
'query' , 'q', 1, "character", "Query genes, separate by comma (required)",
'mode' , 'm', 2, "character", "lnc for lncRNA correlation, circ for circRNA correlation (required)",
'annotation' , 'a', 2, "character", "-a gencodev25, -a gencodev19 (required)",
'symbolid' , 's', 2, "character", "use gene symbol or ensembl id. -s symbol, -s id ",
'demo' , 'd', 2, "character", "-d COADREAD "
),ncol=5,byrow=T)
opt = getopt(spec);
if (is.null(opt$query)) {
cat(paste(getopt(spec, usage=T),"\n","Example: ./correlation.r -n CRC_Rseq_partekflow_rpkm_norm.txt -f factor_CRC_Rseq_partekflow_norm.txt -q FAM83H-AS1,ELFN1-AS1,LINC00346,SNHG15,AC021218.2 -a gencodev25 -s symbol -m lnc
Example: ./correlation.r -d COADREAD -q FAM83H-AS1,ELFN1-AS1,LINC00346,SNHG15,AC021218.2,DDX11-AS1
Example: ./correlation.r -n CRC_Rseq_hg38_id_deseq.txt -f factor_ID.txt -q ENSG00000203499,ENSG00000236081,ENSG00000255874,ENSG00000232956,ENSG00000204876 -a gencodev25 -s id -m lnc
Example: ./correlation.r -n OSCC_Rseq.txt -f factor_OSCC_Rseq_circrna.txt -q chrX_47755339_47705503_fwd,chr2_191537878_191523883_fwd -a gencodev19 -s symbol -m circ -c OSCC_circRNA2.txt
DEMO DATA CMD CIRCRNA ./correlation.r -n output/norm_readstable.txt -f encode_example_circRNA_condition.txt -q chr11_35204640_35201082_fwd,chr10_97437191_97438703_rev,chr9_128515639_128508876_fwd,chr12_68836749_68828771_fwd -a gencodev25 -s symbol -m circ -c norm_readstable_circRNA.txt
DEMO DATA CMD LNCRNA ./correlation.r -n output/norm_readstable.txt -f TCGA_COADREAD_GENCODEV25_condition.txt -q CCAT1,ELFN1-AS1,LINC00346,SNHG15,AC021218.2 -a gencodev25 -s symbol -m lnc
DEMO DATA CMD TCGA ./correlation.r -n output/norm_readstable.txt -f count_matrix_condition.txt -q CCAT1,ELFN1-AS1,LINC00346,SNHG15,AC021218.2 -a gencodev25 -s symbol -m lnc\n"));
q();
}
run_time_message<-function(msg){
message(paste0(Sys.time()," : ",msg))
}
library("data.table")
library("ggplot2")
library("feather")
#### reads table ########
run_time_message("reads table")
if(length(opt$demo)>0) {
if (opt$demo[1]=="COADREAD"){
normreads <- readRDS("COADREAD_fpkm_demo.rds")[[1]]
factor_list <- readRDS("COADREAD_fpkm_demo.rds")[[2]]
colnames(factor_list)<-c("V1","V2")
normreads<-as.data.frame(normreads)
row.names(normreads)<-as.character(normreads[,1])
normreads[,1]<-NULL
# opt$query = "FAM83H-AS1,ELFN1-AS1,LINC00346,SNHG15,AC021218.2"
opt$factorlist = "readRDS(\"COADREAD_fpkm_demo.rds\")[[2]]"
opt$normreads= "readRDS(\"COADREAD_fpkm_demo.rds\")[[1]]"
opt$annotation = "gencodev25"
opt$symbolid = "symbol"
opt$mode = "lnc"
}
} else {
normreads <- as.data.frame(fread(opt$normreads[1],stringsAsFactors = F))
factor_list <- read.delim(opt$factorlist[1], header=FALSE)
if (!is.null(opt$circRNA[1]) & opt$mode[1]=="circ" ){
circrna<-as.data.frame(fread(opt$circRNA[1],stringsAsFactors = F))
circrna<-as.data.frame(circrna)
row.names(circrna)<-as.character(circrna[,1])
circrna[,1]<-NULL
}
normreads<-as.data.frame(normreads)
row.names(normreads)<-as.character(normreads[,1])
normreads[,1]<-NULL
}
###### loading db files #####
run_time_message("loading db files")
if (opt$annotation[1]=="gencodev19"){
# chrsize <- read.delim("hg19.chrom.sizes", header=FALSE)
lnc_gene <-readRDS("v19_lncrna_gene.rds")
codeinggenelist<-readRDS("v19_protein_coding.rds")
lncpedia<-read.delim("lncipedia_4_hc_hg19_id.txt", header=FALSE)
exonidx<-"hg19.gencode.v19.annotation.gtf.exon.list.with.count.idx.gz"
circdb<-readRDS("cirrnadb_hg19.rds")
gene_coordinate<-readRDS("v19_gene_coordinate.rds")
} else if (opt$annotation[1]=="gencodev25") {
# chrsize <- read.delim("hg38.chrom.sizes", header=FALSE)
lnc_gene <- readRDS("v25_lncrna_gene.rds")
codeinggenelist<-readRDS("v25_protein_coding.rds")
all_gene<-rbind(lnc_gene,codeinggenelist)
lncpedia<-read.delim("lncipedia_4_hc_hg38_id.txt", header=FALSE)
exonidx<-"hg38.gencode.v25.annotation.gtf.exon.list.with.count.idx.gz"
circdb<-readRDS("cirrnadb_hg38.rds")
gene_coordinate<-readRDS("v25_gene_coordinate.rds")
} else { cat(paste(getopt(spec, usage=T)));q(); }
# rownames(chrsize)<-chrsize$V1
# chrsize$V1<-NULL
# chrsize<-t(chrsize)
# names(chrsize)<-colnames(chrsize)
# chrsize<-chrsize[1,]
gene_coordinate<-unique(gene_coordinate[,c(1:8)]) # remove entrzid #add
df_opt<-as.data.frame(do.call("rbind", opt),stringsAsFactors = F)
saveRDS(df_opt,'output/opt.rds')
###### loading db files END #####
for_lnc_mode<-function(){
run_time_message("lncRNA analysis start")
##### start table check and queries ##########
if ( sum(length(setdiff(colnames(normreads [,1:ncol(normreads )]),factor_list$V1)),
length(setdiff(factor_list$V1,colnames(normreads [,1:ncol(normreads )]))))!=0 ){
system("echo Unmacthed sample names > output/errormsg.txt"); q();}
if ( length(unique(factor_list$V2)) != 2 ){
system("echo Only support 2 levels factor > output/errormsg.txt"); q(); }
if ( length(factor_list$V2[grep(levels(factor_list$V2)[1],factor_list$V2)]) <3 |
length(factor_list$V2[grep(levels(factor_list$V2)[2],factor_list$V2)]) <3 ) { system("echo Not enought replicates > output/errormsg.txt"); q(); }
#call known lncRNA id or names
if (opt$symbolid[1] == "symbol") {geneidcolumn =all_gene$gencode_gene_symbol }
if (opt$symbolid[1] == "id") {geneidcolumn = all_gene$ensembl_gene_id }
# add functin to check if its really id or gene name
genequery<-unique(unlist(strsplit(opt$query[1],",")[1]))
if (opt$symbolid[1] == "id"){ rownames(normreads) <-gsub("\\..*","",rownames(normreads)) }
if (opt$symbolid[1] == "id"){ genequery <-gsub("\\..*","",genequery) }
queriesindb<-genequery[genequery %in% geneidcolumn]
queriesnotindb <- setdiff(genequery,queriesindb)
run_time_message(paste0("NOT in the gene/circ column: \n" ,paste0(paste(queriesnotindb, sep="", collapse="\n"))))
run_time_message(paste0("In the gene/circ column: \n",paste0(paste(queriesindb, sep="", collapse="\n"))))
q_cor_summary<-data.frame() #generate q_cor_summary table
#for (i in queriesindb) { system(paste0("echo ",i," >> output/genequery_check.txt")) }
for (i in queriesnotindb) {
system(paste0("echo \'",i," no found \' >> output/genequery_check.txt")) ;
q_cor_summary<-rbind(q_cor_summary,data.frame(query=paste0(i,"(no found)"))) # write not found query
}
####### check end ############
###generte linc_coexp_pairs ######
run_time_message("generate linc_coexp_pairs")
if (opt$symbolid[1] == "symbol") {geneidcolumn = gene_coordinate$gencode_gene_symbol }
if (opt$symbolid[1] == "id") {geneidcolumn = gene_coordinate$ensembl_gene_id }
allquery<-data.frame()
for (q_gene in queriesindb){
#q_gene="LINC00346"
query_coordinate<-gene_coordinate[geneidcolumn %in% q_gene,]
#check if the query gene is unique
if(nrow(query_coordinate)>1) { system(paste0("echo \'",q_gene," (multiple ensembl id) \' >> output/genequery_check.txt")) ;}
if(nrow(query_coordinate)>=1) {
system(paste0("echo \'",q_gene," \' >> output/genequery_check.txt"))
q_cor_summary<-rbind(q_cor_summary,data.frame(query=paste0(q_gene))) # for correlation summary
}
query_coordinate<-query_coordinate[rep(1, each=nrow(gene_coordinate)),][,c(1,2,3,6,4,8)]
query_coordinate<-cbind(query_coordinate,gene_coordinate[,c(1,2,3,6,4,8)])
allquery<-rbind(allquery,query_coordinate)
}
colnames(allquery)<-c("chr","lncRNA_start","lncRNA_end","lncRNA_strand","lncRNA_id","lncRNA","co_exp_gene_chr","co_exp_gene_start",
"co_exp_gene_end","co_exp_gene_strand","co_exp_gene_id","co_exp_gene")
linc_coexp_pairs<-allquery
#####generte linc_coexp_pairs END######
##### chek min read count#####
run_time_message("chek min read count")
if (min(normreads) <= 0) { # add offset value
run_time_message("Add 1 to normreads if min <=0 ")
normreads<-normreads+1
}
if (min(normreads) < 0) { #stop run if it's log format
system('echo "Examine the table if contain negative values "')
system('echo "Dose not support matrix with negative values" > output/errormsg.txt')
stop("Dose not support logarithmic format")
}
##### chek min read count end####
##### density plot################
# for test
#coding_name_id<-codeinggenelist$gencode_gene_symbol
#lnc_name_id<-lnc_gene$gencode_gene_symbol
run_time_message("density plot")
coding_gene_name<-codeinggenelist$gencode_gene_symbol
lncRNA_gene_name<-lnc_gene$gencode_gene_symbol
coding_gene_id<-codeinggenelist$ensembl_gene_id
lncRNA_gene_id<-lnc_gene$ensembl_gene_id
generate_density<-function(coding_name_id,lnc_name_id){
run_time_message("Start Distribution of lncRNAs and coding genes")
normreads_sd<-data.table(normreads[apply(normreads,1,mean)!=min(normreads) ,]) # rm row sum=0)
#normreads_sd<-melt.data.table(data.table(merge(t(normreads),factor_list,by.x ="row.names",by.y = "V1")))
normreads_sd<-melt((merge(t(normreads),factor_list,by.x ="row.names",by.y = "V1")))
colnames(normreads_sd)<-c("samples","condition","gene","normreads")
normreads_sd<-data.table(normreads_sd)
normreads_sd[,aaa:=mean(normreads),by=list(gene,condition)]
normreads_sd<-as.data.table(subset(normreads_sd,select=c(condition,gene,aaa)))
normreads_sd<-unique(normreads_sd)
colnames(normreads_sd)[3]<-"normreads"
# normreads_sd<-aggregate(normreads ~ condition + gene, data = normreads_sd[,2:4], mean)
#smalldat[, aggGroup1 := mean(x), by = group1]
meltcodinggene<-normreads_sd[normreads_sd$gene %in% unique(coding_name_id),]
meltcodinggene$group<-paste0("coding genes ",meltcodinggene$condition)
meltlncgene<-normreads_sd[normreads_sd$gene %in% unique(lnc_name_id),]
meltlncgene$group<-paste0("lncRNAs ",meltlncgene$condition)
mergedmelt<-rbind(meltlncgene,meltcodinggene)
mergedmelt$normreads<-log2(mergedmelt$normreads)
ggplot(mergedmelt, aes(x=group,y=normreads,fill =group))+
geom_boxplot(alpha = 0.5)+
#geom_violin(alpha = 0.5,lwd=0.25,draw_quantiles=c(0.25,0.5,0.75))+
theme_bw(base_size = 25)+ #15
coord_flip()+
theme(
aspect.ratio = 0.75,
legend.position="none"
)+
xlab(bquote("")) +
ylab(bquote("Normalized Reads("~log[2]~")"))
ggsave(paste0("output/boxplot.png"), dpi=300, width = 8, height = 6)
}
if (opt$symbolid[1]=="symbol" ){
generate_density(coding_gene_name,lncRNA_gene_name)
} else if (opt$symbolid[1]=="id" ){
generate_density(coding_gene_id,lncRNA_gene_id)
}
##### density plot end################
##### Add distance information########
run_time_message("Add distance information")
lncRNAAA<-linc_coexp_pairs$chr
coexpp<-linc_coexp_pairs$co_exp_gene_chr
disttt<-linc_coexp_pairs$distance
lncS<-linc_coexp_pairs$lncRNA_start
lncE<-linc_coexp_pairs$lncRNA_end
coS<-linc_coexp_pairs$co_exp_gene_start
coE<-linc_coexp_pairs$co_exp_gene_end
linc_coexp_pairs$distance<-ifelse(linc_coexp_pairs$lncRNA==linc_coexp_pairs$co_exp_gene,0,
ifelse(linc_coexp_pairs$chr!=linc_coexp_pairs$co_exp_gene_chr,"Different chr",
ifelse( lncS >= coE & lncE >= coE , paste0("Upstream ",(lncS-coE)/1000," kbp(s)"),
ifelse( lncE <= coS & lncE <= coE , paste0("Downstream ",(coS-lncE)/1000," kbp(s)"),
ifelse( lncS >= coS & lncE >= coE & lncS <= coE & lncE >= coS ,paste0("Upstream overlapped"),
ifelse( lncS <= coS & lncE <= coE & lncS <= coE & lncE >= coS ,paste0("Downstream overlapped") ,
ifelse( lncS <= coE & lncS <= coS & lncE >= coS & lncE >= coE,paste0("co-express gene residents query gene"),
ifelse( lncS >= coS & lncS <= coE & lncE >= coS & lncE <= coE , paste0("query gene residents co-express gene"),"NA"))))))))
linc_coexp_pairs$query_Lncipedia_HC<-ifelse(linc_coexp_pairs$lncRNA_id %in% lncpedia$V1,"Yes","No")
linc_coexp_pairs$co_exp_gene_Lncipedia_HC<-ifelse(linc_coexp_pairs$co_exp_gene_id %in% lncpedia$V1,"Yes","No")
#### add distance end #########
run_time_message("Calculating Pearson correlation")
if (opt$symbolid[1]=="symbol" ){
sub_normreads<-subset(normreads,rownames(normreads) %in% unique(c(linc_coexp_pairs[,"lncRNA"],linc_coexp_pairs[,"co_exp_gene"])))
} else if (opt$symbolid[1]=="id" ){
sub_normreads<-subset(normreads,rownames(normreads) %in% unique(c(linc_coexp_pairs[,"lncRNA_id"],linc_coexp_pairs[,"co_exp_gene_id"])))
}
###### Pearson correlation #######
run_time_message("All samples Pearson correlation")
# change the selection of column accroading the input gene symbol or id
if (opt$symbolid[1]=="symbol" ){
lncRNAcolumn<-linc_coexp_pairs[,"lncRNA"]
coexpcolumn<-linc_coexp_pairs[,"co_exp_gene"]
coexpcolumn_str<-"co_exp_gene"
lncRNAcolumn_str<-"lncRNA"
} else if (opt$symbolid[1]=="id"){
lncRNAcolumn<-linc_coexp_pairs[,"lncRNA_id"]
coexpcolumn<-linc_coexp_pairs[,"co_exp_gene_id"]
coexpcolumn_str<-"co_exp_gene_id"
lncRNAcolumn_str<-"lncRNA_id"
}
corlist<-WGCNA::corAndPvalue(t(log2(sub_normreads)[unique(lncRNAcolumn),]),t(log2(sub_normreads)),nThreads = 6 ,method = "pearson", verbose=1) # calcualte pearson correlation
for (i in 1:length(unique(lncRNAcolumn))) {
run_time_message(paste0("No. of query :", i))
cor_mat<-melt(corlist$cor)
colnames(cor_mat)<-c("query","co_exp_gene","cor")
cor_mat[,1:2]<-sapply(cor_mat[,1:2],as.character)
#cor_mat<-cor_mat[ !(cor_mat$co_exp_gene %in% unique(cor_mat$query)),]
cor_p<-melt(corlist$p) #extract correlation pvalue
colnames(cor_p)<-c("query","co_exp_gene","cor_p")
cor_p[,1:2]<-sapply(cor_p[,1:2],as.character)
#cor_p<-cor_p[ !(cor_p$co_exp_gene %in% unique(cor_p$query)),]
x<-merge(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],1:12],
cor_mat[cor_mat$query ==unique(lncRNAcolumn)[i] & cor_mat$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],"cor"]<-x[order(match(x$co_exp_gene_id,linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],]$co_exp_gene_id)),]$cor
x<-merge(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],1:12],
cor_p[cor_p$query ==unique(lncRNAcolumn)[i] & cor_p$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],"cor_p"]<-x[order(match(x$co_exp_gene_id,linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],]$co_exp_gene_id)),]$cor_p
# for ( factor_levels in 1:length(levels(factor_list$V2))){ # calculation condition correlation
# # calculation of factor pearson
#
# run_time_message(paste0("condition of sample :", paste0(levels(factor_list$V2)[factor_levels])))
#
# corlist<-WGCNA::corAndPvalue(t(log2(sub_normreads)[unique(lncRNAcolumn),colnames(log2(sub_normreads)) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])]),
# t(log2(sub_normreads)[,colnames(log2(sub_normreads)) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])]),nThreads = 6 ,method = "pearson", verbose=1)
# cor_mat<-melt(corlist$cor)
# colnames(cor_mat)<-c("query","co_exp_gene",paste0(levels(factor_list$V2)[factor_levels],"_cor"))
# cor_mat[,1:2]<-sapply(cor_mat[,1:2],as.character)
# # cor_mat<-cor_mat[ !(cor_mat$co_exp_gene %in% unique(cor_mat$query)),]
# cor_p<-melt(corlist$p)
# colnames(cor_p)<-c("query","co_exp_gene",paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue"))
#
# x<-merge(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],1:12],
# cor_mat[cor_mat$query ==unique(lncRNAcolumn)[i] & cor_mat$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
# linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor")]<-
# x[order(match(x$co_exp_gene_id,linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],]$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor")]
#
# x<-merge(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],1:12],
# cor_p[cor_p$query ==unique(lncRNAcolumn)[i] & cor_p$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
# linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]<-
# x[order(match(x$co_exp_gene_id,linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],]$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]
#
#
# }
# add cor summary to q_cor_summary
qq<-unique(lncRNAcolumn)[i] # easily indorduce bug
x<-subset(linc_coexp_pairs[lncRNAcolumn==qq ,], abs(cor) > 0.5)
q_cor_summary[q_cor_summary$query==qq,"Fraction of absolute cor > 0.5"]<-round(nrow(x)/nrow(linc_coexp_pairs[lncRNAcolumn==qq ,]),2)
x<-subset(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i] ,], cor_p < 0.05 )
q_cor_summary[q_cor_summary$query==qq,"Fraction of cor pvalue < 0.05"]<-round(nrow(x)/nrow(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i] ,]),2)
}
for ( factor_levels in 1:length(levels(factor_list$V2))){ # calculation condition correlation
# calculation of factor pearson
run_time_message(paste0("condition of sample :", paste0(levels(factor_list$V2)[factor_levels])))
corlist<-WGCNA::corAndPvalue(t(log2(sub_normreads)[unique(lncRNAcolumn),colnames(log2(sub_normreads)) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])]),
t(log2(sub_normreads)[,colnames(log2(sub_normreads)) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])]),nThreads = 6 ,method = "pearson", verbose=1)
for (i in 1:length(unique(lncRNAcolumn))) {
run_time_message(paste0("No. of query :", i))
cor_mat<-melt(corlist$cor)
colnames(cor_mat)<-c("query","co_exp_gene",paste0(levels(factor_list$V2)[factor_levels],"_cor"))
cor_mat[,1:2]<-sapply(cor_mat[,1:2],as.character)
# cor_mat<-cor_mat[ !(cor_mat$co_exp_gene %in% unique(cor_mat$query)),]
cor_p<-melt(corlist$p)
colnames(cor_p)<-c("query","co_exp_gene",paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue"))
x<-merge(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],1:12],
cor_mat[cor_mat$query ==unique(lncRNAcolumn)[i] & cor_mat$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor")]<-
x[order(match(x$co_exp_gene_id,linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],]$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor")]
x<-merge(linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],1:12],
cor_p[cor_p$query ==unique(lncRNAcolumn)[i] & cor_p$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]<-
x[order(match(x$co_exp_gene_id,linc_coexp_pairs[lncRNAcolumn==unique(lncRNAcolumn)[i],]$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]
}
}
###### END of Pearson correlation #######
###### add reads mean information of lncRNA and co express genes ######
run_time_message("calculating mean reads for all samples")
xx<-as.data.frame(apply(sub_normreads[,],1,mean))
colnames(xx)<-"query_normalized_mean"
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = lncRNAcolumn_str, by.y="row.names",all.x=T)
colnames(xx)<-"co_exp_gene_normalized_mean"
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = coexpcolumn_str, by.y="row.names",all.x=T)
## add conditional mean reads
run_time_message("calculating mean reads for conditional samples")
# add reads mean information of lncRNA and co express genes accroding factors
for ( factor_levels in 1:length(levels(factor_list$V2))){
xx<-as.data.frame(apply(sub_normreads[,colnames(sub_normreads) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])],1,mean))
colnames(xx)<-paste0(levels(factor_list$V2)[factor_levels],"_query_normalized_mean")
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = lncRNAcolumn_str, by.y="row.names",all.x=T)
colnames(xx)<-paste0(levels(factor_list$V2)[factor_levels],"_co_exp_gene_normalized_mean")
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = coexpcolumn_str, by.y="row.names",all.x=T)
}
##### END of add reads mean information of lncRNA and co express genes ######
linc_coexp_pairs_write<-linc_coexp_pairs[,c(2,3,4,5,6,7,1,seq(8,ncol(linc_coexp_pairs)))]
linc_coexp_pairs<-linc_coexp_pairs[,c(2,3,4,5,6,7,1,seq(8,ncol(linc_coexp_pairs)))]
linc_coexp_pairs<-linc_coexp_pairs[order(linc_coexp_pairs$lncRNA),]
run_time_message("Write linc_coexp_pairs.rds")
saveRDS(linc_coexp_pairs, paste0("output/linc_coexp_pairs.rds"))
write_feather(linc_coexp_pairs, paste0("output/linc_coexp_pairs.feather"))
# saveRDS(normreads, paste0("output/normreads.rds"))
saveRDS(q_cor_summary, paste0("output/q_cor_summary.rds"))
write.table(linc_coexp_pairs,"output/linc_coexp_pairs.txt",sep = '\t',row.names = F,quote = F)
write.table(q_cor_summary,"output/q_cor_summary.txt",sep = '\t',row.names = F,quote = F)
circ_gene_merged<-normreads
run_time_message("Write circ_gene_merged_not.rds")
saveRDS(circ_gene_merged, paste0("output/circ_gene_merged_not.rds"))
circ_gene_merged<-as.data.frame(t(circ_gene_merged))
circ_gene_merged<-merge(factor_list,circ_gene_merged, by.x= "V1" , by.y="row.names")
row.names(circ_gene_merged)<-circ_gene_merged$V1
circ_gene_merged$V1<-NULL
colnames(circ_gene_merged)[1]<-"attr"
run_time_message("Write circ_gene_merged.rds")
saveRDS(circ_gene_merged, paste0("output/circ_gene_merged.rds"))
run_time_message("finish")
# write_feather(circ_gene_merged, paste0("output/circ_gene_merged.feather"))
}
#for_lnc_mode()
for_circ_mode<-function(){
####### circ RNA ##########
####### check table start ############
run_time_message("circRNA analysis start")
if ( sum(length(setdiff(colnames(normreads [,1:ncol(normreads )]),factor_list$V1)),
length(setdiff(factor_list$V1,colnames(normreads [,1:ncol(normreads )]))))!=0 ){
system("echo Unmacthed sample names, factor list and normalized reads table > output/errormsg.txt"); q();}
if ( sum(length(setdiff(colnames(circrna [,1:ncol(circrna )]),factor_list$V1)),
length(setdiff(factor_list$V1,colnames(circrna [,1:ncol(circrna )]))))!=0 ){
system("echo Unmacthed sample names, factor list and circRNA read table > output/errormsg.txt"); q();}
if ( length(unique(factor_list$V2)) != 2 ){
system("echo Only support 2 levels factor > output/errormsg.txt"); q(); }
if ( length(factor_list$V2[grep(levels(factor_list$V2)[1],factor_list$V2)]) <3 &
length(factor_list$V2[grep(levels(factor_list$V2)[2],factor_list$V2)]) <3 ) { system("echo Not enought replicates > output/errormsg.txt"); q(); }
# add functin to check if its really id or gene name
genequery<-unique(unlist(strsplit(opt$query[1],",")[1]))
for (i in genequery){
}
if (opt$symbolid[1] == "id"){ rownames(normreads) <-gsub("\\..*","",rownames(normreads)) }
if (opt$symbolid[1] == "id"){ rownames(circrna) <-gsub("\\..*","",rownames(circrna)) } # for test only
if (opt$symbolid[1] == "id"){ genequery <-gsub("\\..*","",genequery) } # for test only
#check if query in the circ rna table
queriesindb<-genequery[genequery %in% rownames(circrna)]
queriesindb<-intersect(genequery,rownames(circrna))
queriesnotindb <- setdiff(genequery,queriesindb)
#queriesindb<-genequery
run_time_message(paste0("NOT in the gene/circ column: \n" ,paste0(paste(queriesnotindb, sep="", collapse="\n"))))
run_time_message(paste0("In the gene/circ column: \n",paste0(paste(queriesindb, sep="", collapse="\n"))))
system(paste0("echo ",length(genequery)," in genequery\n"))
q_cor_summary<-data.frame() #generate q_cor_summary table
#for (i in queriesindb) { system(paste0("echo ",i," >> output/genequery_check.txt")) }
for (i in queriesnotindb) {
system(paste0("echo ",i," \\(no found\\) >> output/genequery_check.txt")) ;
q_cor_summary<-rbind(q_cor_summary,data.frame(query=paste0(i,"(no found)"))) # write not found query
}
####### check end ############
###generte linc_coexp_pairs ######
if (opt$symbolid[1] == "symbol") {geneidcolumn = gene_coordinate$gencode_gene_symbol }
if (opt$symbolid[1] == "id") {geneidcolumn = gene_coordinate$ensembl_gene_id }
allquery<-data.frame()
for (q_gene in queriesindb){
#q_gene="LINC00346"
query_coordinate<-data.frame(circRNA=q_gene,stringsAsFactors=F) #<-gene_coordinate[geneidcolumn %in% q_gene,]
#check if the query gene is unique
if(nrow(query_coordinate)>1) { system(paste0("echo \'",q_gene," (multiple ensembl id) \' >> output/genequery_check.txt")) ;}
if(nrow(query_coordinate)>=1) {
system(paste0("echo \'",q_gene,"\' >> output/genequery_check.txt")) ;
q_cor_summary<-rbind(q_cor_summary,data.frame(query=paste0(q_gene)) ) # for correlation summary
}
query_coordinate<-data.frame(circRNA=query_coordinate[rep(1, each=nrow(gene_coordinate)),],stringsAsFactors=F) #will be
query_coordinate<-cbind(query_coordinate,gene_coordinate[,c(1,2,3,6,4,8)])
allquery<-rbind(allquery,query_coordinate)
}
run_time_message("add allquery column names")
#colnames(allquery)<-c("chr","lncRNA_start","lncRNA_end","lncRNA_strand","lncRNA_id","lncRNA","co_exp_gene_chr","co_exp_gene_start",
# "co_exp_gene_end","co_exp_gene_strand","co_exp_gene_id","co_exp_gene")
colnames(allquery)<-c("circRNA","co_exp_gene_chr","co_exp_gene_start",
"co_exp_gene_end","co_exp_gene_strand","co_exp_gene_id","co_exp_gene")
linc_coexp_pairs<-allquery
#####generte linc_coexp_pairs END######
##### chek min read count#####
if (min(normreads) <= 0) { # add offset value
run_time_message("Add 1 to normreads if min <=0")
normreads<-normreads+1
}
if (min(normreads) < 0) { #stop run if it's log format
run_time_message("Examine the table if contain negative values")
system('echo "Dose not support matrix with negative values" > output/errormsg.txt')
stop("Dose not support logarithmic format")
}
if (min(circrna) <= 0) { # add offset value
run_time_message("Add 1 to circrnas if min <=0")
circrna<-circrna+1
}
if (min(circrna) < 0) { #stop run if it's log format
run_time_message("Examine the table if contain negative values")
system('echo "Dose not support matrix with negative values" > output/errormsg.txt')
stop("Dose not support logarithmic format")
}
##### chek min read count end####
#####add gene abundance dstribution #####
run_time_message("density plot")
coding_gene_name<-codeinggenelist$gencode_gene_symbol
lncRNA_gene_name<-lnc_gene$gencode_gene_symbol
coding_gene_id<-codeinggenelist$ensembl_gene_id
lncRNA_gene_id<-lnc_gene$ensembl_gene_id
generate_density<-function(coding_name_id,lnc_name_id){
system('echo "Distribution of lncRNAs and coding genes"')
normreads_sd<-data.table(normreads[apply(normreads,1,mean)!=min(normreads) ,]) # rm row sum=0)
#normreads_sd<-melt.data.table(data.table(merge(t(normreads),factor_list,by.x ="row.names",by.y = "V1")))
normreads_sd<-melt((merge(t(normreads),factor_list,by.x ="row.names",by.y = "V1")))
colnames(normreads_sd)<-c("samples","condition","gene","normreads")
normreads_sd<-data.table(normreads_sd)
normreads_sd[,aaa:=mean(normreads),by=list(gene,condition)]
normreads_sd<-as.data.table(subset(normreads_sd,select=c(condition,gene,aaa)))
normreads_sd<-unique(normreads_sd)
colnames(normreads_sd)[3]<-"normreads"
# normreads_sd<-aggregate(normreads ~ condition + gene, data = normreads_sd[,2:4], mean)
#smalldat[, aggGroup1 := mean(x), by = group1]
meltcodinggene<-normreads_sd[normreads_sd$gene %in% unique(coding_name_id),]
meltcodinggene$group<-paste0("coding genes ",meltcodinggene$condition)
meltlncgene<-normreads_sd[normreads_sd$gene %in% unique(lnc_name_id),]
meltlncgene$group<-paste0("lncRNAs ",meltlncgene$condition)
mergedmelt<-rbind(meltlncgene,meltcodinggene)
circrna_sd<-melt((merge(t(circrna),factor_list,by.x ="row.names",by.y = "V1")))
colnames(circrna_sd)<-c("samples","condition","gene","normreads")
circrna_sd<-data.table(circrna_sd)
circrna_sd[,aaa:=mean(normreads),by=list(gene,condition)]
circrna_sd<-as.data.table(subset(circrna_sd,select=c(condition,gene,aaa)))
circrna_sd<-unique(normreads_sd)
colnames(circrna_sd)[3]<-"normreads"
circrna_sd$group<-paste0("circRNAs ",circrna_sd$condition)
mergedmelt<-rbind(circrna_sd,mergedmelt)
mergedmelt$normreads<-log2(mergedmelt$normreads)
ggplot(mergedmelt, aes(x=group,y=normreads,fill =group))+
geom_boxplot(alpha = 0.5)+
#geom_violin(alpha = 0.5,lwd=0.25,draw_quantiles=c(0.25,0.5,0.75))+
theme_bw(base_size = 25)+ #15
coord_flip()+
theme(
aspect.ratio = 0.75,
legend.position="none"
)+
xlab(bquote("")) +
ylab(bquote("Normalized Reads("~log[2]~")"))
ggsave(paste0("output/boxplot.png"), dpi=300, width = 8, height = 6)
}
if (opt$symbolid[1]=="symbol" ){
generate_density(coding_gene_name,lncRNA_gene_name)
} else if (opt$symbolid[1]=="id" ){
generate_density(coding_gene_id,lncRNA_gene_id)
}
#####add gene abundance dstribution END#####
##### Add distance information########
asda<-function(){lncRNAAA<-linc_coexp_pairs$chr
coexpp<-linc_coexp_pairs$co_exp_gene_chr
disttt<-linc_coexp_pairs$distance
lncS<-linc_coexp_pairs$lncRNA_start
lncE<-linc_coexp_pairs$lncRNA_end
coS<-linc_coexp_pairs$co_exp_gene_start
coE<-linc_coexp_pairs$co_exp_gene_end
linc_coexp_pairs$distance<-ifelse(linc_coexp_pairs$chr!=linc_coexp_pairs$co_exp_gene_chr,"Different chr",
ifelse( lncS >= coE & lncE >= coE , paste0("Upstream ",(lncS-coE)/1000," kbp(s)"),
ifelse( lncE <= coS & lncE <= coE , paste0("Downstream ",(coS-lncE)/1000," kbp(s)"),
ifelse( lncS >= coS & lncE >= coE & lncS <= coE & lncE >= coS ,paste0("Upstream overlapped"),
ifelse( lncS <= coS & lncE <= coE & lncS <= coE & lncE >= coS ,paste0("Downstream overlapped") ,
ifelse( lncS <= coE & lncS <= coS & lncE >= coS & lncE >= coE,paste0("co-express gene residents query gene"),
ifelse( lncS >= coS & lncS <= coE & lncE >= coS & lncE <= coE , paste0("query gene residents co-express gene"),"NA")))))))
linc_coexp_pairs$query_Lncipedia_HC<-ifelse(linc_coexp_pairs$lncRNA_id %in% lncpedia$V1,"Yes","No")
linc_coexp_pairs$co_exp_gene_Lncipedia_HC<-ifelse(linc_coexp_pairs$co_exp_gene_id %in% lncpedia$V1,"Yes","No")}
#### add distance end #########
run_time_message("Calculating Pearson correlation")
if (opt$symbolid[1]=="symbol" ){
sub_normreads<-subset(normreads,rownames(normreads) %in% unique(linc_coexp_pairs[,"co_exp_gene"]))
} else if (opt$symbolid[1]=="id" ){
sub_normreads<-subset(normreads,rownames(normreads) %in% unique(linc_coexp_pairs[,"co_exp_gene_id"]))
}
###### Pearson correlation #######
if (opt$symbolid[1]=="symbol" ){
querycolumn<-linc_coexp_pairs[,"circRNA"]
coexpcolumn<-linc_coexp_pairs[,"co_exp_gene"]
coexpcolumn_str<-"co_exp_gene"
querycolumn_str<-"circRNA"
} else if (opt$symbolid[1]=="id"){
querycolumn<-linc_coexp_pairs[,"circRNA"]
coexpcolumn<-linc_coexp_pairs[,"co_exp_gene_id"]
coexpcolumn_str<-"co_exp_gene_id"
querycolumn_str<-"circRNA"
}
circrna<-circrna[,colnames(sub_normreads)] # sort circrna column by sub_normreads coulmn
for (i in 1:length(unique(querycolumn))) {
run_time_message(paste0("No. of query :", i))
#linc_coexp_pairs<-linc_coexp_pairs[,1:7] for test
corlist<-WGCNA::corAndPvalue(t(log2(circrna)[unique(querycolumn),]),t(log2(sub_normreads)),nThreads = 6 ,method = "pearson", verbose=1)
cor_mat<-melt(corlist$cor)
colnames(cor_mat)<-c("query","co_exp_gene","cor")
cor_mat[,1:2]<-sapply(cor_mat[,1:2],as.character)
#cor_mat<-cor_mat[ !(cor_mat$co_exp_gene %in% unique(cor_mat$query)),]
cor_p<-melt(corlist$p)
colnames(cor_p)<-c("query","co_exp_gene","cor_p")
cor_p[,1:2]<-sapply(cor_p[,1:2],as.character)
#cor_p<-cor_p[ !(cor_p$co_exp_gene %in% unique(cor_p$query)),]
x<-merge(linc_coexp_pairs[querycolumn==unique(querycolumn)[i],1:7], # merge correlation to linc_coexp_pairs
cor_mat[cor_mat$query ==unique(querycolumn)[i] & cor_mat$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[querycolumn==unique(querycolumn)[i],"cor"]<-x[order(match(x$co_exp_gene_id,linc_coexp_pairs[querycolumn==unique(querycolumn)[i],]$co_exp_gene_id)),]$cor
x<-merge(linc_coexp_pairs[querycolumn==unique(querycolumn)[i],1:7],
cor_p[cor_p$query ==unique(querycolumn)[i] & cor_p$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[querycolumn==unique(querycolumn)[i],"cor_p"]<-x[order(match(x$co_exp_gene_id,linc_coexp_pairs[querycolumn==unique(querycolumn)[i],]$co_exp_gene_id)),]$cor_p
for ( factor_levels in 1:length(levels(factor_list$V2))){ # calculation condition correlation
# calculation of factor pearson
run_time_message(paste0("condition of sample :", paste0(levels(factor_list$V2)[factor_levels])))
corlist<-WGCNA::corAndPvalue(t(log2(circrna)[unique(querycolumn),colnames(log2(circrna)) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])]),
t(log2(sub_normreads)[,colnames(log2(sub_normreads)) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])]),nThreads = 6 ,method = "pearson", verbose=1)
cor_mat<-melt(corlist$cor)
colnames(cor_mat)<-c("query","co_exp_gene",paste0(levels(factor_list$V2)[factor_levels],"_cor"))
cor_mat[,1:2]<-sapply(cor_mat[,1:2],as.character)
#cor_mat<-cor_mat[ !(cor_mat$co_exp_gene %in% unique(cor_mat$query)),]
cor_p<-melt(corlist$p)
colnames(cor_p)<-c("query","co_exp_gene",paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue"))
#x<-merge(linc_coexp_pairs[linc_coexp_pairs$lncRNA==unique(linc_coexp_pairs$lncRNA)[i],1:ncol(linc_coexp_pairs)],
# subset(cor_mat,query ==unique(linc_coexp_pairs$lncRNA)[i] & co_exp_gene %in% unique(linc_coexp_pairs$co_exp_gene) )[,2:3],by.x="co_exp_gene", by.y="co_exp_gene",all.x=T,sort=F)
#linc_coexp_pairs[linc_coexp_pairs$lncRNA==unique(linc_coexp_pairs$lncRNA)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor")]<-
# x[order(match(x$co_exp_gene_id,subset(linc_coexp_pairs,lncRNA==unique(linc_coexp_pairs$lncRNA)[i])$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor")]
# x<-merge(linc_coexp_pairs[linc_coexp_pairs$lncRNA==unique(linc_coexp_pairs$lncRNA)[i],1:ncol(linc_coexp_pairs)],
# subset(cor_p,query ==unique(linc_coexp_pairs$lncRNA)[i] & co_exp_gene %in% unique(linc_coexp_pairs$co_exp_gene))[,2:3],by.x="co_exp_gene", by.y="co_exp_gene",all.x=T,sort=F)
# linc_coexp_pairs[linc_coexp_pairs$lncRNA==unique(linc_coexp_pairs$lncRNA)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]<-
# x[order(match(x$co_exp_gene_id,subset(linc_coexp_pairs,lncRNA==unique(linc_coexp_pairs$lncRNA)[i])$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]
x<-merge(linc_coexp_pairs[querycolumn==unique(querycolumn)[i],1:7],
cor_mat[cor_mat$query ==unique(querycolumn)[i] & cor_mat$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[querycolumn==unique(querycolumn)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor")]<-
x[order(match(x$co_exp_gene_id,linc_coexp_pairs[querycolumn==unique(querycolumn)[i],]$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor")]
x<-merge(linc_coexp_pairs[querycolumn==unique(querycolumn)[i],1:7],
cor_p[cor_p$query ==unique(querycolumn)[i] & cor_p$co_exp_gene %in% unique(coexpcolumn),][,2:3],by.x=coexpcolumn_str, by.y="co_exp_gene",all.x=T,sort=F)
linc_coexp_pairs[querycolumn==unique(querycolumn)[i],paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]<-
x[order(match(x$co_exp_gene_id,linc_coexp_pairs[querycolumn==unique(querycolumn)[i],]$co_exp_gene_id)),][,paste0(levels(factor_list$V2)[factor_levels],"_cor_pvalue")]
}
qq<-unique(linc_coexp_pairs[querycolumn==unique(querycolumn)[i] ,]$circRNA)
x<-subset(linc_coexp_pairs[querycolumn==unique(querycolumn)[i] ,], abs(cor) > 0.5)
q_cor_summary[q_cor_summary$query==qq,"Fraction of absolute cor > 0.5"]<-round(nrow(x)/nrow(linc_coexp_pairs[querycolumn==unique(querycolumn)[i] ,]),2)
x<-subset(linc_coexp_pairs[querycolumn==unique(querycolumn)[i] ,], cor_p < 0.05 )
q_cor_summary[q_cor_summary$query==qq,"Fraction of cor pvalue < 0.05"]<-round(nrow(x)/nrow(linc_coexp_pairs[querycolumn==unique(querycolumn)[i] ,]),2)
}
###### END of Pearson correlation #######
###### add reads mean information of lncRNA and co express genes ######
run_time_message("calculating mean reads for all samples")
xx<-as.data.frame(apply(circrna[,],1,mean)) #circRNA table
colnames(xx)<-"query_normalized_mean"
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = querycolumn_str, by.y="row.names",all.x=T)
xx<-as.data.frame(apply(sub_normreads[,],1,mean))
colnames(xx)<-"co_exp_gene_normalized_mean"
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = coexpcolumn_str, by.y="row.names",all.x=T)
## add conditional mean reads
run_time_message("calculating mean reads for conditional samples")
# add reads mean information of lncRNA and co express genes accroding factors
for ( factor_levels in 1:length(levels(factor_list$V2))){
xx<-as.data.frame(apply(circrna[,colnames(circrna) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])],1,mean)) #circRNA table
colnames(xx)<-paste0(levels(factor_list$V2)[factor_levels],"_query_normalized_mean")
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = querycolumn_str, by.y="row.names",all.x=T)
xx<-as.data.frame(apply(sub_normreads[,colnames(sub_normreads) %in% as.character(factor_list[factor_list$V2==levels(factor_list$V2)[factor_levels],1])],1,mean))
colnames(xx)<-paste0(levels(factor_list$V2)[factor_levels],"_co_exp_gene_normalized_mean")
linc_coexp_pairs<-merge(linc_coexp_pairs,xx,by.x = coexpcolumn_str, by.y="row.names",all.x=T)
}
#linc_coexp_pairs_write<-linc_coexp_pairs[,c(2,3,4,5,6,7,1,seq(8,ncol(linc_coexp_pairs)))]
#linc_coexp_pairs<-linc_coexp_pairs[,c(2,3,4,5,6,7,1,seq(8,ncol(linc_coexp_pairs)))]
linc_coexp_pairs<-linc_coexp_pairs[order(linc_coexp_pairs[,querycolumn_str]),]
##### END of add reads mean information of lncRNA and co express genes ######
###### add circRNA position ########
run_time_message("add circRNA position")
linc_coexp_pairs$circRNA_chr<-sapply(strsplit(linc_coexp_pairs$circRNA,"_"),"[[",1)
circstartend<-data.frame(V1=linc_coexp_pairs$circRNA_5exon<-sapply(strsplit(linc_coexp_pairs$circRNA,"_"),"[[",3),
V2=linc_coexp_pairs$circRNA_5exon<-sapply(strsplit(linc_coexp_pairs$circRNA,"_"),"[[",2))
linc_coexp_pairs$circRNA_5exon <-apply(circstartend,1,min)
linc_coexp_pairs$circRNA_3exon <-apply(circstartend,1,max)
linc_coexp_pairs$circRNA_strand<-ifelse(sapply(strsplit(linc_coexp_pairs$circRNA,"_"),"[[",4)=="fwd","+",
ifelse(sapply(strsplit(linc_coexp_pairs$circRNA,"_"),"[[",4)=="rev","-","NA"))
######### add exon informaion #####################
circ_bed<-unique(linc_coexp_pairs[,c("circRNA","circRNA_chr","circRNA_5exon","circRNA_3exon","circRNA_strand")])
circ_bed$circRNA_5exon<-as.numeric(circ_bed$circRNA_5exon)
circ_bed$circRNA_3exon<-as.numeric(circ_bed$circRNA_3exon)
exonidx_df<-as.data.frame(data.table::fread(paste0("gzip -dc ",exonidx))) #loading exon info db
exonidx_df$V5<-gsub("\\.[0-9]*","",exonidx_df$V5)
exonidx_df$V6<-gsub("\\.[0-9]*","",exonidx_df$V6)
colnames(exonidx_df)<-c("chr","start","end","strand","ensembl_geneid","ensembl_transciptid","gene_symbol","transcipt_symbol","exon_sum","exon_number")
exonidx_df$exon_info<-paste0(exonidx_df$exon_number,"/",exonidx_df$exon_sum)
new_linc_coexp_pairs<-data.frame()
linc_coexp_pairs_sub<-data.frame()
for (i in seq(1:nrow(circ_bed))){
## extract 5exon info
linc_coexp_pairs_sub<-linc_coexp_pairs[linc_coexp_pairs$circRNA %in% circ_bed[i,1],]
tolerance<-2
#find nearest exon
#if close to start find the exons near to the start
#if close to end find the exons near to the end
# test if circ within the exon and rbind, unique would be better
if(min(abs(circ_bed[i,3]-exonidx_df$start)) >= min(abs(exonidx_df$end-circ_bed[i,3]))){
# creating subtracting list , find which start or end smaller or equal to the min end or start
# only find either start or end
exon5_ann<-exonidx_df[which(abs(exonidx_df$end-circ_bed[i,3])<= min(abs(exonidx_df$end-circ_bed[i,3]))+tolerance),] #
exon5_ann<-exon5_ann[exon5_ann$chr %in% circ_bed[i,2] & exon5_ann$strand %in% circ_bed[i,5],]
} else{
exon5_ann<-exonidx_df[which(abs(exonidx_df$start-circ_bed[i,3])<=min(abs(exonidx_df$start-circ_bed[i,3]))+tolerance),]
exon5_ann<-exon5_ann[exon5_ann$chr %in% circ_bed[i,2] & exon5_ann$strand %in% circ_bed[i,5],]
}
## extract 3exon info
if(min(abs(circ_bed[i,4]-exonidx_df$start)) >= min(abs(exonidx_df$end-circ_bed[i,4]))){
exon3_ann<-exonidx_df[which(abs(exonidx_df$end-circ_bed[i,4])<= min(abs(exonidx_df$end-circ_bed[i,4]))+tolerance),]
exon3_ann<-exon3_ann[exon3_ann$chr %in% circ_bed[i,2] & exon3_ann$strand %in% circ_bed[i,5],]
} else{
exon3_ann<-exonidx_df[which(abs(exonidx_df$start-circ_bed[i,4])<=min(abs(exonidx_df$start-circ_bed[i,4]))+tolerance),]
exon3_ann<-exon3_ann[exon3_ann$chr %in% circ_bed[i,2] & exon3_ann$strand %in% circ_bed[i,5],]
}
#ov_txnid<-intersect(exon5_ann$ensembl_transciptid ,exon3_ann$ensembl_transciptid )
#cated_exonann<-rbind(exon3_ann,exon5_ann)
# ov_geneid_paired<-cated_exonann[cated_exonann$ensembl_transciptid %in% ov_txnid,]$ensembl_geneid
#unpaired_txnid<-cated_exonann[cated_exonann$ensembl_geneid %in% !ov_geneid,]$ensembl_transciptid
#ov_txnid<-c(ov_txnid,unpaired_txnid)
# if (length(ov_txnid) > 0){
# exon3_ann<-exon3_ann[exon3_ann$ensembl_transciptid %in% ov_txnid, ] #
# exon5_ann<-exon5_ann[exon5_ann$ensembl_transciptid %in% ov_txnid, ] #
# }
colnames(exon5_ann)<-paste0("5exon_",colnames(exon5_ann))
colnames(exon3_ann)<-paste0("3exon_",colnames(exon3_ann))
#### exon5 #####
if (nrow(exon5_ann) ==0 ) {exon5_ann[1,]<-"NA"}
if (nrow(exon5_ann) ==1 ){
exon5_ann<-cbind(circ_bed[rep(i, each=nrow(exon5_ann)),],exon5_ann)
linc_coexp_pairs_sub<-merge(linc_coexp_pairs_sub,exon5_ann[,c(1,10,11,12,16)], all.x =T , by="circRNA" )
}
if (nrow(exon5_ann) > 1 ){
#exon5_ann[2,]<-exon5_ann[1,] for testing row more than2
exon5_ann<-cbind(circ_bed[rep(i, each=nrow(exon5_ann)),],exon5_ann)
for (a in seq(2,ncol(exon5_ann))){
exon5_ann[1,a]<-paste(as.character(exon5_ann[,a]),collapse=",",sep="")
}
linc_coexp_pairs_sub<-merge(linc_coexp_pairs_sub,exon5_ann[1,c(1,10,11,12,16)], all.x =T , by="circRNA" )
}
##### exon3 ######
if (nrow(exon3_ann) ==0 ) {exon3_ann[1,]<-"NA"}
if (nrow(exon3_ann) ==1 ){
exon3_ann<-cbind(circ_bed[rep(i, each=nrow(exon3_ann)),],exon3_ann)
linc_coexp_pairs_sub<-merge(linc_coexp_pairs_sub,exon3_ann[,c(1,10,11,12,16)], all.x =T , by="circRNA" )
}
if (nrow(exon3_ann) > 1 ){
#exon3_ann[2,]<-exon3_ann[1,] for testing row more than2
exon3_ann<-cbind(circ_bed[rep(i, each=nrow(exon3_ann)),],exon3_ann)
for (a in seq(2,ncol(exon3_ann))){
exon3_ann[1,a]<-paste(as.character(exon3_ann[,a]),collapse=",",sep="")
}
linc_coexp_pairs_sub<-merge(linc_coexp_pairs_sub,exon3_ann[1,c(1,10,11,12,16)], all.x =T , by="circRNA" )
}
new_linc_coexp_pairs<-rbind(new_linc_coexp_pairs,linc_coexp_pairs_sub)
}
######### add exon informaion END #####################
# reorder column names
linc_coexp_pairs<-new_linc_coexp_pairs[,c(1,20:ncol(new_linc_coexp_pairs),2:19)]
###### add circdb cirRNA id #############
#x<-c("chrY", "15435434" ,"15448215" , "-" )
#x<-as.character(circ_bed[1,2:5])
circdb<-as.data.table(circdb)
circrna_tolerance<-2
search_circdb<-function(x){
search_circdb_run<-circdb[chr == x[1] & strand== x[4]]
search_circdb_run<-search_circdb_run[ !((start > as.numeric(x[2]) & start > as.numeric(x[3])) | (end < as.numeric(x[2]) & end < as.numeric(x[3])))]
search_circdb_run<-search_circdb_run[order(abs(as.numeric(x[2])-as.numeric(search_circdb_run$start))+abs(as.numeric(x[3])-as.numeric(search_circdb_run$end)))[1],]
search_circdb_run<-search_circdb_run[!is.na(search_circdb_run$chr),]
if (nrow( search_circdb_run) ==0 ) {
search_circdb_run<-NULL
} else if ((abs(search_circdb_run$start[1]-as.numeric(x[2])) > circrna_tolerance) | ( abs(search_circdb_run$end[1]-as.numeric(x[3])) > circrna_tolerance )){
search_circdb_run<-NULL
}
paste0(search_circdb_run$circRNA_ID,collapse = ",")
}
### for test ###
circirna_test<-function(){
testt<-data.frame(circRNA=row.names(circrna))
testt$chr<-sapply(strsplit(as.character(testt$circRNA),"_"),"[",1)
testt$circRNA_exon1<-sapply(strsplit(as.character(testt$circRNA),"_"),"[",3)
testt$circRNA_exon2<-sapply(strsplit(as.character(testt$circRNA),"_"),"[",2)
testt$start <-apply(testt[,3:4],1,min)
testt$end <-apply(testt[,3:4],1,max)
testt$strand<- ifelse(sapply(strsplit(as.character(testt$circRNA),"_"),"[",4)=="fwd","+",
ifelse(sapply(strsplit(as.character(testt$circRNA),"_"),"[",4)=="rev","-","NA"))
testt<-testt[,c(1,2,5,6,7)]
testt$idd<-apply(testt[,c(2,3,4,5)],1, try(search_circdb))
nrow(testt[testt$idd=="",])
}
circ_bed$best_circRNA_id<-apply(circ_bed[,c(2,3,4,5)],1, try(search_circdb))
linc_coexp_pairs$best_circRNA_id<-""
for (i in seq(1,nrow(circ_bed))){
linc_coexp_pairs[linc_coexp_pairs$circRNA %in% circ_bed[i,]$circRNA ,]$best_circRNA_id <- circ_bed[i,]$best_circRNA_id
}
linc_coexp_pairs<- linc_coexp_pairs[,c(1,ncol(linc_coexp_pairs),2:(ncol(linc_coexp_pairs)-1))]
###### add circdb cirRNA id END#############
saveRDS(linc_coexp_pairs, paste0("output/linc_coexp_pairs.rds"))
saveRDS(normreads, paste0("output/normreads.rds"))
saveRDS(q_cor_summary, paste0("output/q_cor_summary.rds"))
saveRDS(circrna, paste0("output/circrna_reads.rds"))
write_feather(linc_coexp_pairs, paste0("output/linc_coexp_pairs.feather"))
write.table(circrna,"output/circRNA.txt",sep = '\t',quote = F)
write.table(linc_coexp_pairs,"output/linc_coexp_pairs.txt",sep = '\t',row.names = F,quote = F)
write.table(q_cor_summary,"output/q_cor_summary.txt",sep = '\t',row.names = F,quote = F)
#### save merged circrna gene table
circ_gene_merged<-rbind(normreads,circrna[,colnames(normreads)])
saveRDS(circ_gene_merged, paste0("output/circ_gene_merged_not.rds")) # no transposed
circ_gene_merged<-as.data.frame(t(circ_gene_merged))
circ_gene_merged<-merge(factor_list,circ_gene_merged, by.x= "V1" , by.y="row.names")
row.names(circ_gene_merged)<-circ_gene_merged$V1
circ_gene_merged$V1<-NULL
colnames(circ_gene_merged)[1]<-"attr"
saveRDS(circ_gene_merged, paste0("output/circ_gene_merged.rds"))
}
if( opt$mode[1]== "circ" ) {
for_circ_mode()
}else if ( opt$mode[1]== "lnc"){
for_lnc_mode()
}