forked from jiggzson/nerdamer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Solve.js
1360 lines (1256 loc) · 57.8 KB
/
Solve.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Author : Martin Donk
* Website : http://www.nerdamer.com
* Email : [email protected]
* Source : https://github.com/jiggzson/nerdamer
*/
/* global module */
if ((typeof module) !== 'undefined') {
var nerdamer = require('./nerdamer.core.js');
require('./Calculus.js');
require('./Algebra.js');
}
(function () {
//handle imports
var core = nerdamer.getCore(),
_ = core.PARSER,
_A = core.Algebra,
_C = core.Calculus,
explode = _C.integration.decompose_arg,
evaluate = core.Utils.evaluate,
remove = core.Utils.remove,
format = core.Utils.format,
build = core.Utils.build,
Symbol = core.Symbol,
isSymbol = core.Utils.isSymbol,
variables = core.Utils.variables,
S = core.groups.S,
PL = core.groups.PL,
CB = core.groups.CB,
CP = core.groups.CP,
FN = core.groups.FN,
isArray = core.Utils.isArray;
// The search radius for the roots
core.Settings.SOLVE_RADIUS = 1000;
// The maximum number to fish for on each side of the zero
core.Settings.ROOTS_PER_SIDE = 10;
// Covert the number to multiples of pi if possible
core.Settings.make_pi_conversions = true;
// The step size
core.Settings.STEP_SIZE = 0.1;
//the maximum iterations for Newton's method
core.Settings.MAX_NEWTON_ITERATIONS = 200;
//the maximum number of time non-linear solve tries another jump point
core.Settings.MAX_NON_LINEAR_TRIES = 12;
//the amount of iterations the function will start to jump at
core.Settings.NON_LINEAR_JUMP_AT = 50;
//the size of the jump
core.Settings.NON_LINEAR_JUMP_SIZE = 100;
//the original starting point for nonlinear solving
core.Settings.NON_LINEAR_START = 0.01;
core.Symbol.prototype.hasTrig = function () {
return this.containsFunction(['cos', 'sin', 'tan', 'cot', 'csc', 'sec']);
};
core.Symbol.prototype.hasNegativeTerms = function () {
if (this.isComposite()) {
for (var x in this.symbols) {
var sym = this.symbols[x];
if (sym.group === PL && sym.hasNegativeTerms() || this.symbols[x].power.lessThan(0))
return true;
}
}
return false;
};
/* nerdamer version 0.7.x and up allows us to make better use of operator overloading
* As such we can have this data type be supported completely outside of the core.
* This is an equation that has a left hand side and a right hand side
*/
function Equation(lhs, rhs) {
if (rhs.isConstant() && lhs.isConstant() && !lhs.equals(rhs) || lhs.equals(core.Settings.IMAGINARY) || rhs.equals(core.Settings.IMAGINARY))
throw new core.exceptions.NerdamerValueError(lhs.toString() + ' does not equal ' + rhs.toString());
this.LHS = lhs; //left hand side
this.RHS = rhs; //right and side
};
//UTILS ##!!
Equation.prototype = {
toString: function () {
return this.LHS.toString() + '=' + this.RHS.toString();
},
text: function (option) {
return this.LHS.text(option) + '=' + this.RHS.text(option);
},
toLHS: function () {
var eqn = this.removeDenom();
return _.expand(_.subtract(eqn.LHS, eqn.RHS));;
},
removeDenom: function () {
var a = this.LHS.clone();
var b = this.RHS.clone();
//remove the denominator on both sides
var den = _.multiply(a.getDenom(), b.getDenom());
a = _.expand(_.multiply(a, den.clone()));
b = _.expand(_.multiply(b, den));
//swap the groups
if (b.group === CP && b.group !== CP) {
var t = a;
a = b;
b = t; //swap
}
//scan to eliminate denominators
if (a.group === CB) {
var t = new Symbol(a.multiplier),
newRHS = b.clone();
a.each(function (y) {
if (y.power.lessThan(0))
newRHS = _.divide(newRHS, y);
else
t = _.multiply(t, y);
});
a = t;
b = newRHS;
}
else if (a.group === CP) {
//the logic: loop through each and if it has a denominator then multiply it out on both ends
//and then start over
for (var x in a.symbols) {
var sym = a.symbols[x];
if (sym.group === CB) {
for (var y in sym.symbols) {
var sym2 = sym.symbols[y];
if (sym2.power.lessThan(0)) {
return new Equation(
_.expand(_.multiply(sym2.clone().toLinear(), a)),
_.expand(_.multiply(sym2.clone().toLinear(), b))
);
}
}
}
}
}
return new Equation(a, b);
},
clone: function () {
return new Equation(this.LHS.clone(), this.RHS.clone());
},
sub: function (x, y) {
var clone = this.clone();
clone.LHS = clone.LHS.sub(x.clone(), y.clone());
clone.RHS = clone.RHS.sub(x.clone(), y.clone());
return clone;
},
isZero: function () {
return core.Utils.evaluate(this.toLHS()).equals(0);
},
latex: function (option) {
return [this.LHS.latex(option), this.RHS.latex(option)].join('=');
}
};
//overwrite the equals function
_.equals = function (a, b) {
return new Equation(a, b);
};
core.Expression.prototype.solveFor = function (x) {
return solve(core.Utils.isSymbol(this.symbol) ? this.symbol : this.symbol.toLHS(), x).map(function (x) {
return new core.Expression(x);
});
};
core.Expression.prototype.expand = function () {
if (this.symbol instanceof Equation) {
var clone = this.symbol.clone();
clone.RHS = _.expand(clone.RHS);
clone.LHS = _.expand(clone.LHS);
return new core.Expression(clone);
}
return new core.Expression(_.expand(this.symbol));
};
core.Expression.prototype.variables = function () {
if (this.symbol instanceof Equation)
return core.Utils.arrayUnique(variables(this.symbol.LHS).concat(variables(this.symbol.RHS)));
return variables(this.symbol);
};
core.Matrix.jacobian = function(eqns, vars) {
var jacobian = new core.Matrix();
//get the variables if not supplied
if(!vars) {
vars = __.getSystemVariables(eqns);
}
vars.forEach(function(v, i) {
eqns.forEach(function(eq, j) {
var e = core.Calculus.diff(eq.clone(), v);
jacobian.set(j, i, e);
});
});
return jacobian;
};
core.Matrix.prototype.max = function() {
var max = new Symbol(0);
this.each(function(x) {
var e = x.abs();
if(e.gt(max))
max = e;
});
return max;
};
core.Matrix.cMatrix = function(value, vars) {
var m = new core.Matrix();
//make an initial guess
vars.forEach(function(v, i) {
m.set(i, 0, _.parse(value));
});
return m;
};
var setEq = function (a, b) {
return _.equals(a, b);
};
//link the Equation class back to the core
core.Equation = Equation;
//Loops through an array and attempts to fails a test. Stops if manages to fail.
var checkAll = core.Utils.checkAll = function (args, test) {
for (var i = 0; i < args.length; i++)
if (test(args[i]))
return false;
return true;
};
//version solve
var __ = core.Solve = {
version: '2.0.2',
solutions: [],
solve: function (eq, variable) {
var solution = solve(eq, String(variable));
return new core.Vector(solution);
//return new core.Vector(solve(eq.toString(), variable ? variable.toString() : variable));
},
/**
* Brings the equation to LHS. A string can be supplied which will be converted to an Equation
* @param {Equation|String} eqn
* @returns {Symbol}
*/
toLHS: function (eqn) {
if(isSymbol(eqn))
return eqn;
//If it's an equation then call its toLHS function instead
if (!(eqn instanceof Equation)) {
var es = eqn.split('=');
//convert falsey values to zero
es[1] = es[1] || '0';
eqn = new Equation(_.parse(es[0]), _.parse(es[1]));
}
return eqn.toLHS();
},
getSystemVariables: function(eqns) {
vars = variables(eqns[0], null, null, true);
//get all variables
for (var i = 1, l=eqns.length; i < l; i++)
vars = vars.concat(variables(eqns[i]));
//remove duplicates
vars = core.Utils.arrayUnique(vars).sort();
//done
return vars;
},
solveNonLinearSystem: function(eqns, tries, start) {
if(tries < 0)
return [];//can't find a solution
start = typeof start === 'undefined' ? core.Settings.NON_LINEAR_START : start;
//the maximum number of times to jump
var max_tries = core.Settings.MAX_NON_LINEAR_TRIES;
//halfway through the tries
var halfway = Math.floor(max_tries/2);
//initialize the number of tries to 10 if not specified
tries = typeof tries === 'undefined' ? max_tries : tries;
//a point at which we check to see if we're converging. By inspection it seems that we can
//use around 20 iterations to see if we're converging. If not then we retry a jump of x
var jump_at = core.Settings.NON_LINEAR_JUMP_AT;
//we jump by this many points at each pivot point
var jump = core.Settings.NON_LINEAR_JUMP_SIZE;
//used to check if we actually found a solution or if we gave up. Assume we will find a solution.
var found = true;
var create_subs = function(vars, matrix) {
return vars.map(function(x, i) {
return Number(matrix.get(i, 0));
});
};
var vars = __.getSystemVariables(eqns);
var jacobian = core.Matrix.jacobian(eqns, vars, function(x) {
return build(x, vars);
}, true);
var max_iter = core.Settings.MAX_NEWTON_ITERATIONS;
var o, y, iters, xn1, norm, lnorm, xn, d;
var f_eqns = eqns.map(function(eq) {
return build(eq, vars);
});
var J = jacobian.map(function(e) {
return build(e, vars);
}, true);
//initial values
xn1 = core.Matrix.cMatrix(0, vars);;
//initialize the c matrix with something close to 0.
var c = core.Matrix.cMatrix(start, vars);
iters = 0;
//start of algorithm
do {
//if we've reached the max iterations then exit
if(iters > max_iter) {
break;
found = false;
}
//set the substitution object
o = create_subs(vars, c);
//set xn
xn = c.clone();
//make all the substitutions for each of the equations
f_eqns.forEach(function(f, i) {
c.set(i, 0, f.apply(null, o));
});
var m = new core.Matrix();
J.each(function(fn, i, j) {
var ans = fn.apply(null, o);
m.set(i, j, ans);
});
m = m.invert();
//preform the elimination
y = _.multiply(m, c).negate();
//the callback is to avoid overflow in the coeffient denonimator
//it converts it to a decimal and then back to a fraction. Some precision
//is lost be it's better than overflow.
d = y.subtract(xn1, function(x) { return _.parse(Number(x)); });
xn1 = xn.add(y, function(x) { return _.parse(Number(x)); });
//move c is now xn1
c = xn1;
//get the norm
//the expectation is that we're converging to some answer as this point regardless of where we start
//this may have to be adjusted at some point because of erroneous assumptions
if(iters >= jump_at) {
//check the norm. If the norm is greater than one then it's time to try another point
if(norm > 1) {
//reset the start point at halway
if(tries === halfway)
start = 0;
var sign = tries > halfway ? 1 : -1; //which side are we incrementing
//we increment +n at one side and -n at the other.
n = (tries % Math.floor(halfway))+1;
//adjust the start point
start += (sign*n*jump);
//call restart
return __.solveNonLinearSystem(eqns, --tries, start);
}
}
lnorm = norm;
iters++;
norm = d.max();
//exit early. Revisit if we get bugs
if(Number(norm) === Number(lnorm))
break;
}
while(Number(norm) >= Number.EPSILON)
//return a blank set if nothing was found;
if(!found)
return [];
//return c since that's the answer
return __.systemSolutions(c, vars, true, function(x) {
return core.Utils.round(Number(x), 14);
});
},
systemSolutions: function(result, vars, expand_result, callback) {
var solutions = core.Settings.SOLUTIONS_AS_OBJECT ? {} : [];
result.each(function (e, idx) {
var solution = (expand_result ? _.expand(e) : e).valueOf();
if(callback)
solution = callback.call(e, solution);
var variable = vars[idx];
if (core.Settings.SOLUTIONS_AS_OBJECT) {
solutions[variable] = solution;
}
else
solutions.push([variable, solution]); /*NO*/
});
//done
return solutions;
},
//https://www.lakeheadu.ca/sites/default/files/uploads/77/docs/RemaniFinal.pdf
solveSystem: function (eqns, var_array) {
//check if a var_array was specified
//nerdamer.clearVars();// this deleted ALL variables: not what we want
//parse all the equations to LHS. Remember that they come in as strings
for (var i = 0; i < eqns.length; i++)
eqns[i] = __.toLHS(eqns[i]);
var l = eqns.length,
m = new core.Matrix(),
c = new core.Matrix(),
expand_result = false,
vars;
if (typeof var_array === 'undefined') {
//check to make sure that all the equations are linear
if (!_A.allLinear(eqns))
return __.solveNonLinearSystem(eqns);
//core.err('System must contain all linear equations!');
vars = __.getSystemVariables(eqns);
// deletes only the variables of the linear equations in the nerdamer namespace
for (var i = 0; i < vars.length; i++) {
nerdamer.setVar(vars[i], "delete");
}
// populate the matrix
for (var i = 0; i < l; i++) {
var e = eqns[i]; //store the expression
for (var j = 0; j < l; j++) {
var v = vars[j];
var coeffs = [];
e.each(function(x) {
if(x.contains(v)) {
coeffs = coeffs.concat(x.coeffs());
}
});
var cf = core.Utils.arraySum(coeffs);
m.set(i, j, cf);
}
//strip the variables from the symbol so we're left with only the zeroth coefficient
//start with the symbol and remove each variable and its coefficient
var num = e.clone();
vars.map(function(e) {
num = num.stripVar(e);
});
c.set(i, 0, num.negate());
}
}
else {
/**
* The idea is that we loop through each equation and then expand it. Afterwards we loop
* through each term and see if and check to see if it matches one of the variables.
* When a match is found we mark it. No other match should be found for that term. If it
* is we stop since it's not linear.
*/
vars = var_array;
expand_result = true;
for (i = 0; i < l; i++) {
//prefill
c.set(i, 0, new Symbol(0));
var e = _.expand(eqns[i]).collectSymbols(); //expand and store
//go trough each of the variables
for (var j = 0; j < var_array.length; j++) {
m.set(i, j, new Symbol(0));
var v = var_array[j];
//go through the terms and sort the variables
for (var k = 0; k < e.length; k++) {
var term = e[k],
check = false;
for (var z = 0; z < var_array.length; z++) {
//check to see if terms contain multiple variables
if (term.contains(var_array[z])) {
if (check)
core.err('Multiple variables found for term ' + term);
check = true;
}
}
//we made sure that every term contains one variable so it's safe to assume that if the
//variable is found then the remainder is the coefficient.
if (term.contains(v)) {
var tparts = explode(remove(e, k), v);
m.set(i, j, _.add(m.get(i, j), tparts[0]));
}
}
}
//all the remaining terms go to the c matrix
for (k = 0; k < e.length; k++) {
c.set(i, 0, _.add(c.get(i, 0), e[k]));
}
}
//consider case (a+b)*I+u
}
//check if the system has a distinct solution
if(m.determinant().equals(0))
throw new core.exceptions.SolveError('System does not have a distinct solution');
// Use M^-1*c to solve system
m = m.invert();
var result = m.multiply(c);
//correct the sign as per issue #410
if (core.Utils.isArray(var_array))
result.each(function (x) {
return x.negate();
});
return __.systemSolutions(result, vars, expand_result);
},
/**
* The quadratic function but only one side.
* @param {Symbol} c
* @param {Symbol} b
* @param {Symbol} a
* @returns {Symbol}
*/
quad: function (c, b, a) {
var discriminant = _.subtract(_.pow(b.clone(), Symbol(2)), _.multiply(_.multiply(a.clone(), c.clone()), Symbol(4)))/*b^2 - 4ac*/;
var det = _.pow(discriminant, Symbol(0.5));
var retval = [
_.parse(_.divide(_.add(b.clone().negate(), det.clone()), _.multiply(new Symbol(2), a.clone()))),
_.parse(_.divide(_.subtract(b.clone().negate(), det.clone()), _.multiply(new Symbol(2), a.clone())))
];
return retval;
},
/**
* The cubic equation
* http://math.stackexchange.com/questions/61725/is-there-a-systematic-way-of-solving-cubic-equations
* @param {Symbol} d_o
* @param {Symbol} c_o
* @param {Symbol} b_o
* @param {Symbol} a_o
* @returns {Array}
*/
cubic:function (d_o, c_o, b_o, a_o) {
//convert everything to text
var a = a_o.text(), b = b_o.text(), c = c_o.text(), d = d_o.text();
var d0s = '({1})^2-3*({0})*({2})',
d0 = _.parse(format(d0s, a, b, c)),
Q = _.parse(format('((2*({1})^3-9*({0})*({1})*({2})+27*({0})^2*({3}))^2-4*(({1})^2-3*({0})*({2}))^3)^(1/2)', a, b, c, d)),
C = _.parse(format('((1/2)*(({4})+2*({1})^3-9*({0})*({1})*({2})+27*({0})^2*({3})))^(1/3)', a, b, c, d, Q));
//check if C equals 0
var scope = {};
//populate the scope object
variables(C).map(function (x) {
scope[x] = 1;
});
var Ct = core.Utils.block('PARSE2NUMBER', function () {
return _.parse(C, scope);
});
if (Number(d0) === 0 && Number(Ct) === 0) //negate Q such that C != 0
C = _.parse(format('((1/2)*(-({4})+2*({1})^3-9*({0})*({1})*({2})+27*({0})^2*({3})))^(1/3)', a, b, c, d, Q));
var xs = [
'-(b/(3*a))-C/(3*a)-(((b^2-3*a*c))/(3*a*C))',
'-(b/(3*a))+(C*(1+i*sqrt(3)))/(6*a)+((1-i*sqrt(3))*(b^2-3*a*c))/(6*a*C)'.replace(/i/g, core.Settings.IMAGINARY),
'-(b/(3*a))+(C*(1-i*sqrt(3)))/(6*a)+((1+i*sqrt(3))*(b^2-3*a*c))/(6*a*C)'.replace(/i/g, core.Settings.IMAGINARY)
];
return xs.map(function (e, i) {
var o = {a: a_o.clone(), b: b_o.clone(), c: c_o.clone(), d: d_o.clone(), C: C.clone()};
return _.parse(e, o);
});
},
/**
* The quartic equation
* @param {Symbol} e
* @param {Symbol} d
* @param {Symbol} c
* @param {Symbol} b
* @param {Symbol} a
* @returns {Array}
*/
quartic: function (e, d, c, b, a) {
var scope = {};
core.Utils.arrayUnique(variables(a).concat(variables(b))
.concat(variables(c)).concat(variables(d)).concat(variables(e)))
.map(function (x) {
scope[x] = 1;
});
a = a.toString();
b = b.toString();
c = c.toString();
d = d.toString();
e = e.toString();
var p, q, D, D0, D1, Q, x1, x2, x3, x4;
/*var D = core.Utils.block('PARSE2NUMBER', function() {
return _.parse(format("256*({0})^3*({4})^3-192*({0})^2*({1})*({3})*({4})^2-128*({0})^2*({2})^2*({4})^2+144*({0})^2*({2})*({3})^2*({4})"+
"-27*({0})^2*({3})^4+144*({0})*({1})^2*({2})*({4})^2-6*({0})*({1})^2*({3})^2*({4})-80*({0})*({1})*({2})^2*({3})*({4})+18*({0})*({1})*({2})*({3})^3"+
"+16*({0})*({2})^4*({4})-4*({0})*({2})^3*({3})^2-27*({1})^4*({4})^2+18*({1})^3*({2})*({3})*({4})-4*({1})^3*({3})^3-4*({1})^2*({2})^3*({4})+({1})^2*({2})^2*({3})^2",
a, b, c, d, e), scope);
});*/
p = _.parse(format("(8*({0})*({2})-3*({1})^2)/(8*({0})^2)", a, b, c)).toString(); //a, b, c
q = _.parse(format("(({1})^3-4*({0})*({1})*({2})+8*({0})^2*({3}))/(8*({0})^3)", a, b, c, d)).toString();//a, b, c, d, e
D0 = _.parse(format("12*({0})*({4})-3*({1})*({3})+({2})^2", a, b, c, d, e)).toString(); //a, b, c, d, e
D1 = _.parse(format("2*({2})^3-9*({1})*({2})*({3})+27*({1})^2*({4})+27*({0})*({3})^2-72*({0})*({2})*({4})", a, b, c, d, e)).toString(); //a, b, c, d, e
Q = _.parse(format("((({1})+(({1})^2-4*({0})^3)^(1/2))/2)^(1/3)", D0, D1)).toString(); //D0, D1
S = _.parse(format("(1/2)*(-(2/3)*({1})+(1/(3*({0}))*(({2})+(({3})/({2})))))^(1/2)", a, p, Q, D0)).toString(); //a, p, Q, D0
x1 = _.parse(format("-(({1})/(4*({0})))-({4})+(1/2)*sqrt(-4*({4})^2-2*({2})+(({3})/({4})))", a, b, p, q, S)); //a, b, p, q, S
x2 = _.parse(format("-(({1})/(4*({0})))-({4})-(1/2)*sqrt(-4*({4})^2-2*({2})+(({3})/({4})))", a, b, p, q, S)); //a, b, p, q, S
x3 = _.parse(format("-(({1})/(4*({0})))+({4})+(1/2)*sqrt(-4*({4})^2-2*({2})-(({3})/({4})))", a, b, p, q, S)); //a, b, p, q, S
x4 = _.parse(format("-(({1})/(4*({0})))+({4})-(1/2)*sqrt(-4*({4})^2-2*({2})-(({3})/({4})))", a, b, p, q, S)); //a, b, p, q, S
return [x1, x2, x3, x4];
},
/**
* Breaks the equation up in its factors and tries to solve the smaller parts
* @param {Symbol} symbol
* @param {String} solve_for
* @returns {Array}
*/
divideAndConquer: function (symbol, solve_for) {
var sols = [];
//see if we can solve the factors
var factors = core.Algebra.Factor.factor(symbol);
if (factors.group === CB) {
factors.each(function (x) {
x = Symbol.unwrapPARENS(x);
sols = sols.concat(solve(x, solve_for));
});
}
return sols;
},
/**
* Attempts to solve the equation assuming it's a polynomial with numeric coefficients
* @param {Symbol} eq
* @param {String} solve_for
* @returns {Array}
*/
csolve: function (eq, solve_for) {
return core.Utils.block('IGNORE_E', function () {
var f, p, pn, n, pf, r, theta, sr, sp, roots;
roots = [];
f = core.Utils.decompose_fn(eq, solve_for, true);
if (f.x.group === S) {
p = _.parse(f.x.power);
pn = Number(p);
n = _.pow(_.divide(f.b.negate(), f.a), p.invert());
pf = Symbol.toPolarFormArray(n);
r = pf[0];
theta = pf[1];
sr = r.toString();
sp = p.toString();
var k, root, str;
for (var i = 0; i < pn; i++) {
k = i;
str = format('({0})*e^(2*{1}*pi*{2}*{3})', sr, k, p, core.Settings.IMAGINARY);
root = _.parse(str);
roots.push(root);
}
}
return roots;
}, true);
},
/**
* Generates starting points for the Newton solver given an expression at zero.
* It beings by check if zero is a good point and starts expanding by a provided step size.
* Builds on the fact that if the sign changes over an interval then a zero
* must exist on that interval
* @param {Symbol} symbol
* @param {Number} step
* @returns {Array}
*/
getPoints: function (symbol, step) {
step = step || 0.01;
var f = build(symbol);
var start = Math.round(f(0)),
last = f(start),
last_sign = last / Math.abs(last),
points = [],
rside = core.Settings.ROOTS_PER_SIDE, // the max number of roots on right side
lside = rside * 2 + 1; // the max number of roots on left side
// check around the starting point
points.push(Math.floor(start / 2)); //half way from zero might be a good start
points.push(Math.abs(start)); //|f(0)| could be a good start
points.push(start);//|f(0)| could be a good start
//adjust for log. A good starting point to include for log is 0.1
symbol.each(function (x) {
if (x.containsFunction(core.Settings.LOG))
points.push(0.1);
});
// Possible issue #1. If the step size exceeds the zeros then they'll be missed. Consider the case
// where the function dips to negative and then back the positive with a step size of 0.1. The function
// will miss the zeros because it will jump right over it. Think of a case where this can happen.
for (var i = start; (i) < core.Settings.SOLVE_RADIUS; i++) {
var val = f(i * step),
sign = val / Math.abs(val);
if (isNaN(val) || !isFinite(val) || points.length > rside) {
break;
}
//compare the signs. The have to be different if they cross a zero
if (sign !== last_sign) {
points.push((i - 1) / 2); //take note of the possible zero location
}
last_sign = sign;
}
//check the other side
for (var i = start - 1; i > -core.Settings.SOLVE_RADIUS; i--) {
var val = f(i),
sign = val / Math.abs(val);
if (isNaN(val) || !isFinite(val) || points.length > lside)
break;
//compare the signs. The have to be different if they cross a zero
if (sign !== last_sign)
points.push((i - 1) / 2); //take note of the possible zero location
last_sign = sign;
}
return points;
},
Newton: function (point, f, fp) {
var maxiter = core.Settings.MAX_NEWTON_ITERATIONS,
iter = 0;
//first try the point itself. If it's zero viola. We're done
var x0 = point, x;
do {
var fx0 = f(x0); //store the result of the function
//if the value is zero then we're done because 0 - (0/d f(x0)) = 0
if (x0 === 0 && fx0 === 0) {
x = 0;
break;
}
iter++;
if (iter > maxiter)
return; //naximum iterations reached
x = x0 - fx0 / fp(x0);
var e = Math.abs(x - x0);
x0 = x;
}
while (e > Number.EPSILON)
return x;
},
rewrite: function (rhs, lhs, for_variable) {
lhs = lhs || new Symbol(0);
if(rhs.isComposite() && rhs.isLinear()) {
//try to isolate the square root
//container for the square roots
var sqrts = [];
//all else
var rem = [];
rhs.each(function(x) {
x = x.clone();
if(x.fname === 'sqrt' && x.contains(for_variable)) {
sqrts.push(x);
}
else {
rem.push(x);
}
}, true);
if(sqrts.length === 1) {
//move the remainder to the RHS
lhs = _.expand(_.pow(_.subtract(lhs, core.Utils.arraySum(rem)), new Symbol(2)));
//square both sides
rhs = _.expand(_.pow(Symbol.unwrapSQRT(sqrts[0]), new Symbol(2)));
}
}
else {
rhs = Symbol.unwrapSQRT(_.expand(rhs)); //expand the term expression go get rid of quotients when possible
}
var c = 0, //a counter to see if we have all terms with the variable
l = rhs.length;
//try to rewrite the whole thing
if (rhs.group === CP && rhs.contains(for_variable) && rhs.isLinear()) {
rhs.distributeMultiplier();
var t = new Symbol(0);
//first bring all the terms containing the variable to the lhs
rhs.each(function (x) {
if (x.contains(for_variable)) {
c++;
t = _.add(t, x.clone());
}
else
lhs = _.subtract(lhs, x.clone());
});
rhs = t;
//if not all the terms contain the variable so it's in the form
//a*x^2+x
if (c !== l) {
return __.rewrite(rhs, lhs, for_variable);
}
else {
return [rhs, lhs];
}
}
else if (rhs.group === CB && rhs.contains(for_variable) && rhs.isLinear()) {
if (rhs.multiplier.lessThan(0)) {
rhs.multiplier = rhs.multiplier.multiply(new core.Frac(-1));
lhs.multiplier = lhs.multiplier.multiply(new core.Frac(-1));
}
if (lhs.equals(0))
return new Symbol(0);
else {
var t = new Symbol(1);
rhs.each(function (x) {
if (x.contains(for_variable))
t = _.multiply(t, x.clone());
else
lhs = _.divide(lhs, x.clone());
});
rhs = t;
return __.rewrite(rhs, lhs, for_variable);
}
}
else if (!rhs.isLinear() && rhs.contains(for_variable)) {
var p = _.parse(rhs.power.clone().invert());
rhs = _.pow(rhs, p.clone());
lhs = _.pow(_.expand(lhs), p.clone());
return __.rewrite(rhs, lhs, for_variable);
}
else if (rhs.group === FN || rhs.group === S || rhs.group === PL) {
return [rhs, lhs];
}
},
sqrtSolve: function(symbol, v) {
var sqrts = new Symbol(0);
var rem = new Symbol(0);
if(symbol.isComposite()) {
symbol.each(function(x) {
if(x.fname === 'sqrt' && x.contains(v)) {
sqrts = _.add(sqrts, x.clone());
}
else {
rem = _.add(rem, x.clone());
}
});
//quick and dirty ATM
if(!sqrts.equals(0)) {
var t = _.expand(_.multiply(_.parse(symbol.multiplier), _.subtract(_.pow(rem, new Symbol(2)), _.pow(sqrts, new Symbol(2)))));
//square both sides
var solutions = solve(t, v);
//test the points. The dumb way of getting the answers
solutions = solutions.filter(function(e) {
if(e.isImaginary())
return e;
var subs = {};
subs[v] = e;
var point = evaluate(symbol, subs);
if(point.equals(0))
return e;
});
return solutions;
}
}
}
};
/*
*
* @param {String[]|String|Equation} eqns
* @param {type} solve_for
* @returns {Array}
*/
var solve = function (eqns, solve_for, solutions) {
//make preparations if it's an Equation
if (eqns instanceof Equation) {
//if it's zero then we're done
if (eqns.isZero())
return [new Symbol(0)];
//if the lhs = x then we're done
if (eqns.LHS.equals(solve_for) && !eqns.RHS.contains(solve_for)) {
return [eqns.RHS];
}
//if the rhs = x then we're done
if (eqns.RHS.equals(solve_for) && !eqns.LHS.contains(solve_for)) {
return [eqns.LHS];
}
}
//unwrap the vector since what we want are the elements
if (eqns instanceof core.Vector)
eqns = eqns.elements;
solve_for = solve_for || 'x'; //assumes x by default
//If it's an array then solve it as a system of equations
if (isArray(eqns)) {
return __.solveSystem.apply(undefined, arguments);
}
//parse out functions. Fix for issue #300
//eqns = core.Utils.evaluate(eqns);
solutions = solutions || [];
//mark existing solutions as not to have duplicates
var existing = {};
//Is usued to add solutions to set.
//TODO: Set is now implemented and should be utilized
var add_to_result = function (r, has_trig) {
var r_is_symbol = isSymbol(r);
if (r === undefined || typeof r === 'number' && isNaN(r))
return;
if (isArray(r)) {
r.map(function(sol) {
add_to_result(sol);
});
}
else {
if (r.valueOf() !== 'null') {
if (!r_is_symbol)
r = _.parse(r);
//try to convert the number to multiples of pi
if (core.Settings.make_pi_conversions && has_trig) {
var temp = _.divide(r.clone(), new Symbol(Math.PI)),
m = temp.multiplier,
a = Math.abs(m.num),
b = Math.abs(m.den);
if (a < 10 && b < 10)
r = _.multiply(temp, new Symbol('pi'));
}
//convert to a string so we can mark it as a known solution
var r_str = r.toString();
if (!existing[r_str])
solutions.push(r); /*NO*/
//mark the answer as seen
existing[r_str] = true;
}
}
};
//maybe we get lucky
if (eqns.group === S && eqns.contains(solve_for)) {
add_to_result(new Symbol(0));
return solutions;
}
if (eqns.group === CB) {
var sf = String(solve_for); //everything else belongs to the coeff
//get the denominator and make sure it doesn't have x since we don't know how to solve for those
eqns.each(function (x) {
if (x.contains(sf))
solve(x, solve_for, solutions);
});
return solutions;
}
if(eqns.group === FN && eqns.fname === 'sqrt') {
eqns = _.pow(Symbol.unwrapSQRT(eqns), new Symbol(2));
}
var eq = core.Utils.isSymbol(eqns) ? eqns : __.toLHS(eqns),
vars = core.Utils.variables(eq), //get a list of all the variables
numvars = vars.length;//how many variables are we dealing with
//if we're dealing with a single variable then we first check if it's a
//polynomial (including rationals).If it is then we use the Jenkins-Traubb algorithm.
//Don't waste time
if (eq.group === S || eq.group === CB && eq.contains(solve_for))
return [new Symbol(0)];
//force to polynomial. We go through each and then we look at what it would
//take for its power to be an integer
//if the power is a fractional we divide by the fractional power
var fractionals = {},
cfact;
var correct_denom = function (symbol) {
symbol = _.expand(symbol);
var original = symbol.clone(); //preserve the original
if (symbol.symbols) {
for (var x in symbol.symbols) {
var sym = symbol.symbols[x];
//get the denominator of the sub-symbol
var den = sym.getDenom();
if(!den.isConstant(true) && symbol.isComposite()) {
var t = new Symbol(0);
symbol.each(function(e) {
t = _.add(t, _.multiply(e, den.clone()));
});
return correct_denom(_.multiply(_.parse(symbol.multiplier), t));
}