forked from meta-llama/llama-recipes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
samsum_dataset.py
41 lines (29 loc) · 1.71 KB
/
samsum_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
# For dataset details visit: https://huggingface.co/datasets/samsum
import copy
import datasets
def get_preprocessed_samsum(dataset_config, tokenizer, split):
if not hasattr(dataset_config, "trust_remote_code") or not dataset_config.trust_remote_code:
raise ValueError("The repository for samsum contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/samsum. To activate `trust_remote_code` option use this config: --samsum_dataset.trust_remote_code=True")
dataset = datasets.load_dataset("samsum", split=split, trust_remote_code=dataset_config.trust_remote_code)
prompt = (
f"Summarize this dialog:\n{{dialog}}\n---\nSummary:\n"
)
def apply_prompt_template(sample):
return {
"prompt": prompt.format(dialog=sample["dialogue"]),
"summary": sample["summary"],
}
dataset = dataset.map(apply_prompt_template, remove_columns=list(dataset.features))
def tokenize_add_label(sample):
prompt = tokenizer.encode(tokenizer.bos_token + sample["prompt"], add_special_tokens=False)
summary = tokenizer.encode(sample["summary"] + tokenizer.eos_token, add_special_tokens=False)
sample = {
"input_ids": prompt + summary,
"attention_mask" : [1] * (len(prompt) + len(summary)),
"labels": [-100] * len(prompt) + summary,
}
return sample
dataset = dataset.map(tokenize_add_label, remove_columns=list(dataset.features))
return dataset