-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathprepare_physionet.py
226 lines (190 loc) · 7.66 KB
/
prepare_physionet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
'''
https://github.com/akaraspt/deepsleepnet
Copyright 2017 Akara Supratak and Hao Dong. All rights reserved.
'''
import argparse
import glob
import math
import ntpath
import os
import shutil
import urllib
import urllib2
from datetime import datetime
import numpy as np
import pandas as pd
from mne import Epochs, pick_types, find_events
from mne.io import concatenate_raws, read_raw_edf
import dhedfreader
# Label values
W = 0
N1 = 1
N2 = 2
N3 = 3
REM = 4
UNKNOWN = 5
stage_dict = {
"W": W,
"N1": N1,
"N2": N2,
"N3": N3,
"REM": REM,
"UNKNOWN": UNKNOWN
}
class_dict = {
0: "W",
1: "N1",
2: "N2",
3: "N3",
4: "REM",
5: "UNKNOWN"
}
ann2label = {
"Sleep stage W": 0,
"Sleep stage 1": 1,
"Sleep stage 2": 2,
"Sleep stage 3": 3,
"Sleep stage 4": 3,
"Sleep stage R": 4,
"Sleep stage ?": 5,
"Movement time": 5
}
EPOCH_SEC_SIZE = 30
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default="data_2013/",
help="File path to the CSV or NPY file that contains walking data.")
parser.add_argument("--output_dir", type=str, default="data_2013/eeg_fpz_cz",
help="Directory where to save outputs.")
parser.add_argument("--select_ch", type=str, default="EEG Fpz-Cz",
help="File path to the trained model used to estimate walking speeds.")
args = parser.parse_args()
# Output dir
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
else:
shutil.rmtree(args.output_dir)
os.makedirs(args.output_dir)
# Select channel
select_ch = args.select_ch
# Read raw and annotation EDF files
psg_fnames = glob.glob(os.path.join(args.data_dir, "*PSG.edf"))
ann_fnames = glob.glob(os.path.join(args.data_dir, "*Hypnogram.edf"))
psg_fnames.sort()
ann_fnames.sort()
psg_fnames = np.asarray(psg_fnames)
ann_fnames = np.asarray(ann_fnames)
for i in range(len(psg_fnames)):
# if not "ST7171J0-PSG.edf" in psg_fnames[i]:
# continue
# i = ii+80
# if i >= len(psg_fnames):
# break
raw = read_raw_edf(psg_fnames[i], preload=True, stim_channel=None)
sampling_rate = raw.info['sfreq']
raw_ch_df = raw.to_data_frame(scaling_time=100.0)[select_ch]
raw_ch_df = raw_ch_df.to_frame()
raw_ch_df.set_index(np.arange(len(raw_ch_df)))
# Get raw header
f = open(psg_fnames[i], 'r')
reader_raw = dhedfreader.BaseEDFReader(f)
reader_raw.read_header()
h_raw = reader_raw.header
f.close()
raw_start_dt = datetime.strptime(h_raw['date_time'], "%Y-%m-%d %H:%M:%S")
# Read annotation and its header
f = open(ann_fnames[i], 'r')
reader_ann = dhedfreader.BaseEDFReader(f)
reader_ann.read_header()
h_ann = reader_ann.header
_, _, ann = zip(*reader_ann.records())
f.close()
ann_start_dt = datetime.strptime(h_ann['date_time'], "%Y-%m-%d %H:%M:%S")
# Assert that raw and annotation files start at the same time
assert raw_start_dt == ann_start_dt
# Generate label and remove indices
remove_idx = [] # indicies of the data that will be removed
labels = [] # indicies of the data that have labels
label_idx = []
for a in ann[0]:
onset_sec, duration_sec, ann_char = a
ann_str = "".join(ann_char)
label = ann2label[ann_str]
if label != UNKNOWN:
if duration_sec % EPOCH_SEC_SIZE != 0:
raise Exception("Something wrong")
duration_epoch = int(duration_sec / EPOCH_SEC_SIZE)
label_epoch = np.ones(duration_epoch, dtype=np.int) * label
labels.append(label_epoch)
idx = int(onset_sec * sampling_rate) + np.arange(duration_sec * sampling_rate, dtype=np.int)
label_idx.append(idx)
print ("Include onset:{}, duration:{}, label:{} ({})".format(
onset_sec, duration_sec, label, ann_str
))
else:
idx = int(onset_sec * sampling_rate) + np.arange(duration_sec * sampling_rate, dtype=np.int)
remove_idx.append(idx)
print ("Remove onset:{}, duration:{}, label:{} ({})".format(
onset_sec, duration_sec, label, ann_str))
labels = np.hstack(labels)
print ("before remove unwanted: {}".format(np.arange(len(raw_ch_df)).shape))
if len(remove_idx) > 0:
remove_idx = np.hstack(remove_idx)
select_idx = np.setdiff1d(np.arange(len(raw_ch_df)), remove_idx)
else:
select_idx = np.arange(len(raw_ch_df))
print ("after remove unwanted: {}".format(select_idx.shape))
# Select only the data with labels
print ("before intersect label: {}".format(select_idx.shape))
label_idx = np.hstack(label_idx)
select_idx = np.intersect1d(select_idx, label_idx)
print ("after intersect label: {}".format(select_idx.shape))
# Remove extra index
if len(label_idx) > len(select_idx):
print("before remove extra labels: {}, {}".format(select_idx.shape, labels.shape))
extra_idx = np.setdiff1d(label_idx, select_idx)
# Trim the tail
if np.all(extra_idx > select_idx[-1]):
# n_trims = len(select_idx) % int(EPOCH_SEC_SIZE * sampling_rate)
# n_label_trims = int(math.ceil(n_trims / (EPOCH_SEC_SIZE * sampling_rate)))
n_label_trims = int(math.ceil(len(extra_idx) / (EPOCH_SEC_SIZE * sampling_rate)))
if n_label_trims!=0:
# select_idx = select_idx[:-n_trims]
labels = labels[:-n_label_trims]
print("after remove extra labels: {}, {}".format(select_idx.shape, labels.shape))
# Remove movement and unknown stages if any
raw_ch = raw_ch_df.values[select_idx]
# Verify that we can split into 30-s epochs
if len(raw_ch) % (EPOCH_SEC_SIZE * sampling_rate) != 0:
raise Exception("Something wrong")
n_epochs = len(raw_ch) / (EPOCH_SEC_SIZE * sampling_rate)
# Get epochs and their corresponding labels
x = np.asarray(np.split(raw_ch, n_epochs)).astype(np.float32)
y = labels.astype(np.int32)
assert len(x) == len(y)
# Select on sleep periods
w_edge_mins = 30
nw_idx = np.where(y != stage_dict["W"])[0]
start_idx = nw_idx[0] - (w_edge_mins * 2)
end_idx = nw_idx[-1] + (w_edge_mins * 2)
if start_idx < 0: start_idx = 0
if end_idx >= len(y): end_idx = len(y) - 1
select_idx = np.arange(start_idx, end_idx+1)
print("Data before selection: {}, {}".format(x.shape, y.shape))
x = x[select_idx]
y = y[select_idx]
print("Data after selection: {}, {}".format(x.shape, y.shape))
# Save
filename = ntpath.basename(psg_fnames[i]).replace("-PSG.edf", ".npz")
save_dict = {
"x": x,
"y": y,
"fs": sampling_rate,
"ch_label": select_ch,
"header_raw": h_raw,
"header_annotation": h_ann,
}
np.savez(os.path.join(args.output_dir, filename), **save_dict)
print ("\n=======================================\n")
if __name__ == "__main__":
main()