forked from hyperopt/hyperopt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
61 lines (58 loc) · 2.06 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import re
import setuptools
with open("hyperopt/__init__.py", encoding="utf8") as f:
version = re.search(r"__version__ = \"(.*?)\"", f.read()).group(1)
if version is None:
raise ImportError("Could not find __version__ in hyperopt/__init__.py")
setuptools.setup(
name="hyperopt",
version=version,
packages=setuptools.find_packages(include=["hyperopt*"]),
entry_points={"console_scripts": ["hyperopt-mongo-worker=hyperopt.mongoexp:main"]},
url="https://hyperopt.github.io/hyperopt",
project_urls={
"Source": "https://github.com/hyperopt/hyperopt",
},
author="James Bergstra",
author_email="[email protected]",
description="Distributed Asynchronous Hyperparameter Optimization",
long_description="",
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"Environment :: Console",
"License :: OSI Approved :: BSD License",
"Operating System :: MacOS :: MacOS X",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3 :: Only",
"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering",
"Topic :: Software Development",
],
platforms=["Linux", "OS-X", "Windows"],
license="BSD",
keywords="Bayesian optimization hyperparameter model selection",
include_package_data=True,
requires_python=">=3.7",
install_requires=[
"numpy>=1.17",
"scipy",
"networkx>=2.2",
"tqdm",
"cloudpickle",
],
extras_require={
"SparkTrials": ["pyspark", "py4j"],
"MongoTrials": "pymongo>=4.0.0",
"ATPE": ["lightgbm", "scikit-learn"],
"dev": ["black", "pre-commit", "nose", "pytest"],
},
tests_require=["nose", "pytest"],
zip_safe=False,
)