From 770ab200f296d8d0269d37fdca84bb742cee38b1 Mon Sep 17 00:00:00 2001 From: comfyanonymous Date: Tue, 29 Oct 2024 10:11:46 -0400 Subject: [PATCH] Cleanup SkipLayerGuidanceSD3 node. --- comfy_extras/nodes_sd3.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/comfy_extras/nodes_sd3.py b/comfy_extras/nodes_sd3.py index 6bd06f4a3f6..4d664093cd4 100644 --- a/comfy_extras/nodes_sd3.py +++ b/comfy_extras/nodes_sd3.py @@ -104,7 +104,7 @@ class SkipLayerGuidanceSD3: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL", ), - "layers": ("STRING", {"default": "7,8,9", "multiline": False}), + "layers": ("STRING", {"default": "7, 8, 9", "multiline": False}), "scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 10.0, "step": 0.1}), "start_percent": ("FLOAT", {"default": 0.01, "min": 0.0, "max": 1.0, "step": 0.001}), "end_percent": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}) @@ -119,11 +119,12 @@ def skip_guidance(self, model, layers, scale, start_percent, end_percent): if layers == "" or layers == None: return (model, ) # check if layer is comma separated integers - assert layers.replace(",", "").isdigit(), "Layers must be comma separated integers" def skip(args, extra_args): return args model_sampling = model.get_model_object("model_sampling") + sigma_start = model_sampling.percent_to_sigma(start_percent) + sigma_end = model_sampling.percent_to_sigma(end_percent) def post_cfg_function(args): model = args["model"] @@ -137,10 +138,9 @@ def post_cfg_function(args): for layer in layers: model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, skip, "dit", "double_block", layer) model_sampling.percent_to_sigma(start_percent) - sigma_start = model_sampling.percent_to_sigma(start_percent) - sigma_end = model_sampling.percent_to_sigma(end_percent) + sigma_ = sigma[0].item() - if scale > 0 and sigma_ > sigma_end and sigma_ < sigma_start: + if scale > 0 and sigma_ >= sigma_end and sigma_ <= sigma_start: (slg,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options) cfg_result = cfg_result + (cond_pred - slg) * scale return cfg_result