forked from CUAI/CorrectAndSmooth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiments.py
179 lines (154 loc) · 5.38 KB
/
run_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm
import argparse
import os
from collections import defaultdict
import glob
from copy import deepcopy
import torch_geometric.transforms as T
from torch_sparse import SparseTensor
from torch_geometric.utils import to_undirected
import numpy as np
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from logger import Logger
import random
from outcome_correlation import *
def main():
parser = argparse.ArgumentParser(description='Outcome Correlations)')
parser.add_argument('--dataset', type=str)
parser.add_argument('--method', type=str)
parser.add_argument('--device', type=int, default=0)
args = parser.parse_args()
args.device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
dataset = PygNodePropPredDataset(name=f'ogbn-{args.dataset}')
data = dataset[0]
adj, D_isqrt = process_adj(data)
normalized_adjs = gen_normalized_adjs(adj, D_isqrt)
DAD, DA, AD = normalized_adjs
evaluator = Evaluator(name=f'ogbn-{args.dataset}')
split_idx = dataset.get_idx_split()
def eval_test(result, idx=split_idx['test']):
return evaluator.eval({'y_true': data.y[idx],'y_pred': result[idx].argmax(dim=-1, keepdim=True),})['acc']
if args.dataset == 'arxiv':
lp_dict = {
'idxs': ['train'],
'alpha': 0.9,
'num_propagations': 50,
'A': AD,
}
plain_dict = {
'train_only': True,
'alpha1': 0.87,
'A1': AD,
'num_propagations1': 50,
'alpha2': 0.81,
'A2': DAD,
'num_propagations2': 50,
'display': False,
}
plain_fn = double_correlation_autoscale
"""
If you tune hyperparameters on test set
{'alpha1': 0.9988673963255859, 'alpha2': 0.7942279952481052, 'A1': 'DA', 'A2': 'AD'}
gets you to 72.64
"""
linear_dict = {
'train_only': True,
'alpha1': 0.98,
'alpha2': 0.65,
'A1': AD,
'A2': DAD,
'num_propagations1': 50,
'num_propagations2': 50,
'display': False,
}
linear_fn = double_correlation_autoscale
"""
If you tune hyperparameters on test set
{'alpha1': 0.9956668128133523, 'alpha2': 0.8542393515434346, 'A1': 'DA', 'A2': 'AD'}
gets you to 73.35
"""
mlp_dict = {
'train_only': True,
'alpha1': 0.9791632871592579,
'alpha2': 0.7564990804200602,
'A1': DA,
'A2': AD,
'num_propagations1': 50,
'num_propagations2': 50,
'display': False,
}
mlp_fn = double_correlation_autoscale
gat_dict = {
'labels': ['train'],
'alpha': 0.8,
'A': DAD,
'num_propagations': 50,
'display': False,
}
gat_fn = only_outcome_correlation
elif args.dataset == 'products':
lp_dict = {
'idxs': ['train'],
'alpha': 0.5,
'num_propagations': 50,
'A': DAD,
}
plain_dict = {
'train_only': True,
'alpha1': 1.0,
'alpha2': 0.9,
'scale': 20.0,
'A1': DAD,
'A2': DAD,
'num_propagations1': 50,
'num_propagations2': 50,
}
plain_fn = double_correlation_fixed
linear_dict = {
'train_only': True,
'alpha1': 1.0,
'alpha2': 0.9,
'scale': 20.0,
'A1': DAD,
'A2': DAD,
'num_propagations1': 50,
'num_propagations2': 50,
}
linear_fn = double_correlation_fixed
mlp_dict = {
'train_only': True,
'alpha1': 1.0,
'alpha2': 0.8,
'scale': 10.0,
'A1': DAD,
'A2': DA,
'num_propagations1': 50,
'num_propagations2': 50,
}
mlp_fn = double_correlation_fixed
model_outs = glob.glob(f'models/{args.dataset}_{args.method}/*.pt')
if args.method == 'lp':
out = label_propagation(data, split_idx, args,**lp_dict)
print('Valid acc: ', eval_test(out, split_idx['valid']))
print('Test acc:', eval_test(out, split_idx['test']))
return
get_orig_acc(data, eval_test, model_outs, split_idx)
while True:
if args.method == 'plain':
evaluate_params(data, eval_test, model_outs, split_idx, plain_dict, fn = plain_fn)
elif args.method == 'linear':
evaluate_params(data, eval_test, model_outs, split_idx, linear_dict, fn = linear_fn)
elif args.method == 'mlp':
evaluate_params(data, eval_test, model_outs, split_idx, mlp_dict, fn = mlp_fn)
elif args.method == 'gat':
evaluate_params(data, eval_test, model_outs, split_idx, gat_dict, fn = gat_fn)
# import pdb; pdb.set_trace()
break
# name = f'{args.experiment}_{args.search_type}_{args.model_dir}'
# setup_experiments(data, eval_test, model_outs, split_idx, normalized_adjs, args.experiment, args.search_type, name, num_iters=300)
# return
if __name__ == "__main__":
main()