forked from CUAI/CorrectAndSmooth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_models.py
211 lines (156 loc) · 6.72 KB
/
gen_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
import torch
import torch.nn.functional as F
import torch.nn as nn
from tqdm import tqdm
from copy import deepcopy
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, SAGEConv
from torch_sparse import SparseTensor
from torch_geometric.utils import to_undirected
import numpy as np
from ogb.nodeproppred import PygNodePropPredDataset, Evaluator
from outcome_correlation import prepare_folder
from diffusion_feature import preprocess
import glob
import os
import shutil
from logger import Logger
class MLP(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout, relu_first = True):
super(MLP, self).__init__()
self.lins = torch.nn.ModuleList()
self.lins.append(torch.nn.Linear(in_channels, hidden_channels))
self.bns = torch.nn.ModuleList()
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.lins.append(torch.nn.Linear(hidden_channels, hidden_channels))
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
self.lins.append(torch.nn.Linear(hidden_channels, out_channels))
self.dropout = dropout
self.relu_first = relu_first
def reset_parameters(self):
for lin in self.lins:
lin.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, x):
for i, lin in enumerate(self.lins[:-1]):
x = lin(x)
if self.relu_first:
x = F.relu(x, inplace=True)
x = self.bns[i](x)
if not self.relu_first:
x = F.relu(x, inplace=True)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.lins[-1](x)
return F.log_softmax(x, dim=-1)
class MLPLinear(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super(MLPLinear, self).__init__()
self.lin = torch.nn.Linear(in_channels, out_channels)
def reset_parameters(self):
self.lin.reset_parameters()
def forward(self, x):
return F.log_softmax(self.lin(x), dim=-1)
def train(model, x, y_true, train_idx, optimizer):
model.train()
optimizer.zero_grad()
out = model(x[train_idx])
loss = F.nll_loss(out, y_true.squeeze(1)[train_idx])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, x, y, split_idx, evaluator):
model.eval()
out = model(x)
y_pred = out.argmax(dim=-1, keepdim=True)
train_acc = evaluator.eval({
'y_true': y[split_idx['train']],
'y_pred': y_pred[split_idx['train']],
})['acc']
valid_acc = evaluator.eval({
'y_true': y[split_idx['valid']],
'y_pred': y_pred[split_idx['valid']],
})['acc']
test_acc = evaluator.eval({
'y_true': y[split_idx['test']],
'y_pred': y_pred[split_idx['test']],
})['acc']
return (train_acc, valid_acc, test_acc), out
def main():
parser = argparse.ArgumentParser(description='gen_models')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--dataset', type=str, default='arxiv')
parser.add_argument('--log_steps', type=int, default=1)
parser.add_argument('--model', type=str, default='mlp')
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--use_embeddings', action='store_true')
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--runs', type=int, default=10)
args = parser.parse_args()
print(args)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
dataset = PygNodePropPredDataset(name=f'ogbn-{args.dataset}',transform=T.ToSparseTensor())
data = dataset[0]
data.adj_t = data.adj_t.to_symmetric()
x = data.x
split_idx = dataset.get_idx_split()
preprocess_data = PygNodePropPredDataset(name=f'ogbn-{args.dataset}')[0]
if args.dataset == 'arxiv':
embeddings = torch.cat([preprocess(preprocess_data, 'diffusion', post_fix=args.dataset),
preprocess(preprocess_data, 'spectral', post_fix=args.dataset)], dim=-1)
elif args.dataset == 'products':
embeddings = preprocess(preprocess_data, 'spectral', post_fix=args.dataset)
if args.use_embeddings:
x = torch.cat([x, embeddings], dim=-1)
if args.dataset == 'arxiv':
x = (x-x.mean(0))/x.std(0)
if args.model == 'mlp':
#model = MLP(x.size(-1),args.hidden_channels, dataset.num_classes, args.num_layers, 0.5, args.dataset == 'products').cuda()
model = MLP(x.size(-1),args.hidden_channels, dataset.num_classes, args.num_layers, 0.5, args.dataset == 'products').to(device)
elif args.model=='linear':
#model = MLPLinear(x.size(-1), dataset.num_classes).cuda()
model = MLPLinear(x.size(-1), dataset.num_classes).to(device)
elif args.model=='plain':
#model = MLPLinear(x.size(-1), dataset.num_classes).cuda()
model = MLPLinear(x.size(-1), dataset.num_classes).to(device)
x = x.to(device)
y_true = data.y.to(device)
train_idx = split_idx['train'].to(device)
model_dir = prepare_folder(f'{args.dataset}_{args.model}', model)
evaluator = Evaluator(name=f'ogbn-{args.dataset}')
logger = Logger(args.runs, args)
for run in range(args.runs):
import gc
gc.collect()
print(sum(p.numel() for p in model.parameters()))
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
best_valid = 0
best_out = None
for epoch in range(1, args.epochs):
loss = train(model, x, y_true, train_idx, optimizer)
result, out = test(model, x, y_true, split_idx, evaluator)
train_acc, valid_acc, test_acc = result
if valid_acc > best_valid:
best_valid = valid_acc
best_out = out.cpu().exp()
print(f'Run: {run + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Loss: {loss:.4f}, '
f'Train: {100 * train_acc:.2f}%, '
f'Valid: {100 * valid_acc:.2f}% '
f'Test: {100 * test_acc:.2f}%')
logger.add_result(run, result)
logger.print_statistics(run)
torch.save(best_out, f'{model_dir}/{run}.pt')
logger.print_statistics()
if __name__ == "__main__":
main()