Skip to content

Commit

Permalink
doc(eod): update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
yaoyongqiang committed Dec 30, 2021
1 parent 0a83f85 commit a894828
Showing 1 changed file with 7 additions and 6 deletions.
13 changes: 7 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@ It aim on provide two key feature about Object Detection:
+ Efficient: we will focus on training **VERY HIGH ACCURARY** single-shot detection model, and model compress (quantization/sparsity) will be heavy address.
+ Easy: easy to use, easy to add new features(backbone/head/neck), easy to deploy.
+ Large-Scale Dataset Training [Detail](https://github.com/ModelTC/rank_dataset)
+ Equalized Focal Loss for Dense Long-Tailed Object Detection
+ Equalized Focal Loss for Dense Long-Tailed Object Detection [EFL](docs/equalized_focal_loss.md)
+ Improve-YOLOX [YOLOX-RET](docs/benchmark.md)


The master branch works with **PyTorch 1.8.1**.
Expand Down Expand Up @@ -62,8 +63,7 @@ Step3: fp16, add fp16 setting into runtime config

```yaml
runtime:
runner:
type: fp16
fp16: True
```
### Eval
Expand Down Expand Up @@ -121,13 +121,14 @@ mpirun -np 8 python -m eod train --config configs/det/yolox/yolox_tiny.yaml --la

## Custom Example

* [custom dataset](configs/custom/custom_dataset.yaml)
* [rank_dataset](configs/custom/rank_dataset.yaml)
* [custom dataset](configs/det/custom/custom_dataset.yaml)
* [rank_dataset](configs/det/custom/rank_dataset.yaml)

## Benckmark

* [YOLOX](docs/benchmark.md)
* [YOLOX-Ret] (docs)/benchmark.md
* [YOLOX-Ret](docs/benchmark.md
* [EFL] (docs/equalized_focal_loss.md)
* [YOLOV5](docs/benchmark.md)
* [RetinaNet](docs/benchmark.md)

Expand Down

0 comments on commit a894828

Please sign in to comment.