forked from robovm/bdwgc
-
Notifications
You must be signed in to change notification settings - Fork 3
/
typd_mlc.c
730 lines (677 loc) · 27 KB
/
typd_mlc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
/*
* Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
* Copyright (c) 1999-2000 by Hewlett-Packard Company. All rights reserved.
*
* THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
* OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
*
* Permission is hereby granted to use or copy this program
* for any purpose, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
#include "private/gc_pmark.h"
/*
* Some simple primitives for allocation with explicit type information.
* Simple objects are allocated such that they contain a GC_descr at the
* end (in the last allocated word). This descriptor may be a procedure
* which then examines an extended descriptor passed as its environment.
*
* Arrays are treated as simple objects if they have sufficiently simple
* structure. Otherwise they are allocated from an array kind that supplies
* a special mark procedure. These arrays contain a pointer to a
* complex_descriptor as their last word.
* This is done because the environment field is too small, and the collector
* must trace the complex_descriptor.
*
* Note that descriptors inside objects may appear cleared, if we encounter a
* false reference to an object on a free list. In the GC_descr case, this
* is OK, since a 0 descriptor corresponds to examining no fields.
* In the complex_descriptor case, we explicitly check for that case.
*
* MAJOR PARTS OF THIS CODE HAVE NOT BEEN TESTED AT ALL and are not testable,
* since they are not accessible through the current interface.
*/
#include "gc_typed.h"
#define TYPD_EXTRA_BYTES (sizeof(word) - EXTRA_BYTES)
STATIC GC_bool GC_explicit_typing_initialized = FALSE;
STATIC int GC_explicit_kind = 0;
/* Object kind for objects with indirect */
/* (possibly extended) descriptors. */
STATIC int GC_array_kind = 0;
/* Object kind for objects with complex */
/* descriptors and GC_array_mark_proc. */
/* Extended descriptors. GC_typed_mark_proc understands these. */
/* These are used for simple objects that are larger than what */
/* can be described by a BITMAP_BITS sized bitmap. */
typedef struct {
word ed_bitmap; /* lsb corresponds to first word. */
GC_bool ed_continued; /* next entry is continuation. */
} ext_descr;
/* Array descriptors. GC_array_mark_proc understands these. */
/* We may eventually need to add provisions for headers and */
/* trailers. Hence we provide for tree structured descriptors, */
/* though we don't really use them currently. */
typedef union ComplexDescriptor {
struct LeafDescriptor { /* Describes simple array */
word ld_tag;
# define LEAF_TAG 1
size_t ld_size; /* bytes per element */
/* multiple of ALIGNMENT */
size_t ld_nelements; /* Number of elements. */
GC_descr ld_descriptor; /* A simple length, bitmap, */
/* or procedure descriptor. */
} ld;
struct ComplexArrayDescriptor {
word ad_tag;
# define ARRAY_TAG 2
size_t ad_nelements;
union ComplexDescriptor * ad_element_descr;
} ad;
struct SequenceDescriptor {
word sd_tag;
# define SEQUENCE_TAG 3
union ComplexDescriptor * sd_first;
union ComplexDescriptor * sd_second;
} sd;
} complex_descriptor;
#define TAG ld.ld_tag
STATIC ext_descr * GC_ext_descriptors = NULL;
/* Points to array of extended */
/* descriptors. */
STATIC size_t GC_ed_size = 0; /* Current size of above arrays. */
#define ED_INITIAL_SIZE 100
STATIC size_t GC_avail_descr = 0; /* Next available slot. */
STATIC int GC_typed_mark_proc_index = 0; /* Indices of my mark */
STATIC int GC_array_mark_proc_index = 0; /* procedures. */
STATIC void GC_push_typed_structures_proc(void)
{
GC_push_all((ptr_t)&GC_ext_descriptors,
(ptr_t)&GC_ext_descriptors + sizeof(word));
}
/* Add a multiword bitmap to GC_ext_descriptors arrays. Return */
/* starting index. */
/* Returns -1 on failure. */
/* Caller does not hold allocation lock. */
STATIC signed_word GC_add_ext_descriptor(const GC_word * bm, word nbits)
{
size_t nwords = divWORDSZ(nbits + WORDSZ-1);
signed_word result;
size_t i;
word last_part;
size_t extra_bits;
DCL_LOCK_STATE;
LOCK();
while (GC_avail_descr + nwords >= GC_ed_size) {
ext_descr * new;
size_t new_size;
word ed_size = GC_ed_size;
if (ed_size == 0) {
GC_ASSERT((word)&GC_ext_descriptors % sizeof(word) == 0);
GC_push_typed_structures = GC_push_typed_structures_proc;
UNLOCK();
new_size = ED_INITIAL_SIZE;
} else {
UNLOCK();
new_size = 2 * ed_size;
if (new_size > MAX_ENV) return(-1);
}
new = (ext_descr *) GC_malloc_atomic(new_size * sizeof(ext_descr));
if (new == 0) return(-1);
LOCK();
if (ed_size == GC_ed_size) {
if (GC_avail_descr != 0) {
BCOPY(GC_ext_descriptors, new,
GC_avail_descr * sizeof(ext_descr));
}
GC_ed_size = new_size;
GC_ext_descriptors = new;
} /* else another thread already resized it in the meantime */
}
result = GC_avail_descr;
for (i = 0; i < nwords-1; i++) {
GC_ext_descriptors[result + i].ed_bitmap = bm[i];
GC_ext_descriptors[result + i].ed_continued = TRUE;
}
last_part = bm[i];
/* Clear irrelevant bits. */
extra_bits = nwords * WORDSZ - nbits;
last_part <<= extra_bits;
last_part >>= extra_bits;
GC_ext_descriptors[result + i].ed_bitmap = last_part;
GC_ext_descriptors[result + i].ed_continued = FALSE;
GC_avail_descr += nwords;
UNLOCK();
return(result);
}
/* Table of bitmap descriptors for n word long all pointer objects. */
STATIC GC_descr GC_bm_table[WORDSZ/2];
/* Return a descriptor for the concatenation of 2 nwords long objects, */
/* each of which is described by descriptor. */
/* The result is known to be short enough to fit into a bitmap */
/* descriptor. */
/* Descriptor is a GC_DS_LENGTH or GC_DS_BITMAP descriptor. */
STATIC GC_descr GC_double_descr(GC_descr descriptor, word nwords)
{
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
descriptor = GC_bm_table[BYTES_TO_WORDS((word)descriptor)];
};
descriptor |= (descriptor & ~GC_DS_TAGS) >> nwords;
return(descriptor);
}
STATIC complex_descriptor *
GC_make_sequence_descriptor(complex_descriptor *first,
complex_descriptor *second);
/* Build a descriptor for an array with nelements elements, */
/* each of which can be described by a simple descriptor. */
/* We try to optimize some common cases. */
/* If the result is COMPLEX, then a complex_descr* is returned */
/* in *complex_d. */
/* If the result is LEAF, then we built a LeafDescriptor in */
/* the structure pointed to by leaf. */
/* The tag in the leaf structure is not set. */
/* If the result is SIMPLE, then a GC_descr */
/* is returned in *simple_d. */
/* If the result is NO_MEM, then */
/* we failed to allocate the descriptor. */
/* The implementation knows that GC_DS_LENGTH is 0. */
/* *leaf, *complex_d, and *simple_d may be used as temporaries */
/* during the construction. */
#define COMPLEX 2
#define LEAF 1
#define SIMPLE 0
#define NO_MEM (-1)
STATIC int GC_make_array_descriptor(size_t nelements, size_t size,
GC_descr descriptor, GC_descr *simple_d,
complex_descriptor **complex_d,
struct LeafDescriptor * leaf)
{
# define OPT_THRESHOLD 50
/* For larger arrays, we try to combine descriptors of adjacent */
/* descriptors to speed up marking, and to reduce the amount */
/* of space needed on the mark stack. */
if ((descriptor & GC_DS_TAGS) == GC_DS_LENGTH) {
if (descriptor == (GC_descr)size) {
*simple_d = nelements * descriptor;
return(SIMPLE);
} else if ((word)descriptor == 0) {
*simple_d = (GC_descr)0;
return(SIMPLE);
}
}
if (nelements <= OPT_THRESHOLD) {
if (nelements <= 1) {
if (nelements == 1) {
*simple_d = descriptor;
return(SIMPLE);
} else {
*simple_d = (GC_descr)0;
return(SIMPLE);
}
}
} else if (size <= BITMAP_BITS/2
&& (descriptor & GC_DS_TAGS) != GC_DS_PROC
&& (size & (sizeof(word)-1)) == 0) {
int result =
GC_make_array_descriptor(nelements/2, 2*size,
GC_double_descr(descriptor,
BYTES_TO_WORDS(size)),
simple_d, complex_d, leaf);
if ((nelements & 1) == 0) {
return(result);
} else {
struct LeafDescriptor * one_element =
(struct LeafDescriptor *)
GC_malloc_atomic(sizeof(struct LeafDescriptor));
if (result == NO_MEM || one_element == 0) return(NO_MEM);
one_element -> ld_tag = LEAF_TAG;
one_element -> ld_size = size;
one_element -> ld_nelements = 1;
one_element -> ld_descriptor = descriptor;
switch(result) {
case SIMPLE:
{
struct LeafDescriptor * beginning =
(struct LeafDescriptor *)
GC_malloc_atomic(sizeof(struct LeafDescriptor));
if (beginning == 0) return(NO_MEM);
beginning -> ld_tag = LEAF_TAG;
beginning -> ld_size = size;
beginning -> ld_nelements = 1;
beginning -> ld_descriptor = *simple_d;
*complex_d = GC_make_sequence_descriptor(
(complex_descriptor *)beginning,
(complex_descriptor *)one_element);
break;
}
case LEAF:
{
struct LeafDescriptor * beginning =
(struct LeafDescriptor *)
GC_malloc_atomic(sizeof(struct LeafDescriptor));
if (beginning == 0) return(NO_MEM);
beginning -> ld_tag = LEAF_TAG;
beginning -> ld_size = leaf -> ld_size;
beginning -> ld_nelements = leaf -> ld_nelements;
beginning -> ld_descriptor = leaf -> ld_descriptor;
*complex_d = GC_make_sequence_descriptor(
(complex_descriptor *)beginning,
(complex_descriptor *)one_element);
break;
}
case COMPLEX:
*complex_d = GC_make_sequence_descriptor(
*complex_d,
(complex_descriptor *)one_element);
break;
}
return(COMPLEX);
}
}
leaf -> ld_size = size;
leaf -> ld_nelements = nelements;
leaf -> ld_descriptor = descriptor;
return(LEAF);
}
STATIC complex_descriptor *
GC_make_sequence_descriptor(complex_descriptor *first,
complex_descriptor *second)
{
struct SequenceDescriptor * result =
(struct SequenceDescriptor *)
GC_malloc(sizeof(struct SequenceDescriptor));
/* Can't result in overly conservative marking, since tags are */
/* very small integers. Probably faster than maintaining type */
/* info. */
if (result != 0) {
result -> sd_tag = SEQUENCE_TAG;
result -> sd_first = first;
result -> sd_second = second;
}
return((complex_descriptor *)result);
}
#ifdef UNDEFINED
complex_descriptor * GC_make_complex_array_descriptor(word nelements,
complex_descriptor *descr)
{
struct ComplexArrayDescriptor * result =
(struct ComplexArrayDescriptor *)
GC_malloc(sizeof(struct ComplexArrayDescriptor));
if (result != 0) {
result -> ad_tag = ARRAY_TAG;
result -> ad_nelements = nelements;
result -> ad_element_descr = descr;
}
return((complex_descriptor *)result);
}
#endif
STATIC ptr_t * GC_eobjfreelist = NULL;
STATIC ptr_t * GC_arobjfreelist = NULL;
STATIC mse * GC_typed_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit, word env);
STATIC mse * GC_array_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit, word env);
/* Caller does not hold allocation lock. */
STATIC void GC_init_explicit_typing(void)
{
register unsigned i;
DCL_LOCK_STATE;
GC_STATIC_ASSERT(sizeof(struct LeafDescriptor) % sizeof(word) == 0);
LOCK();
if (GC_explicit_typing_initialized) {
UNLOCK();
return;
}
GC_explicit_typing_initialized = TRUE;
/* Set up object kind with simple indirect descriptor. */
GC_eobjfreelist = (ptr_t *)GC_new_free_list_inner();
GC_explicit_kind = GC_new_kind_inner(
(void **)GC_eobjfreelist,
(WORDS_TO_BYTES((word)-1) | GC_DS_PER_OBJECT),
TRUE, TRUE);
/* Descriptors are in the last word of the object. */
GC_typed_mark_proc_index = GC_new_proc_inner(GC_typed_mark_proc);
/* Set up object kind with array descriptor. */
GC_arobjfreelist = (ptr_t *)GC_new_free_list_inner();
GC_array_mark_proc_index = GC_new_proc_inner(GC_array_mark_proc);
GC_array_kind = GC_new_kind_inner(
(void **)GC_arobjfreelist,
GC_MAKE_PROC(GC_array_mark_proc_index, 0),
FALSE, TRUE);
for (i = 0; i < WORDSZ/2; i++) {
GC_bm_table[i] = (((word)-1) << (WORDSZ - i)) | GC_DS_BITMAP;
}
UNLOCK();
}
STATIC mse * GC_typed_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit, word env)
{
word bm = GC_ext_descriptors[env].ed_bitmap;
word * current_p = addr;
word current;
ptr_t greatest_ha = GC_greatest_plausible_heap_addr;
ptr_t least_ha = GC_least_plausible_heap_addr;
DECLARE_HDR_CACHE;
INIT_HDR_CACHE;
for (; bm != 0; bm >>= 1, current_p++) {
if (bm & 1) {
current = *current_p;
FIXUP_POINTER(current);
if (current >= (word)least_ha && current <= (word)greatest_ha) {
PUSH_CONTENTS((ptr_t)current, mark_stack_ptr,
mark_stack_limit, (ptr_t)current_p, exit1);
}
}
}
if (GC_ext_descriptors[env].ed_continued) {
/* Push an entry with the rest of the descriptor back onto the */
/* stack. Thus we never do too much work at once. Note that */
/* we also can't overflow the mark stack unless we actually */
/* mark something. */
mark_stack_ptr++;
if ((word)mark_stack_ptr >= (word)mark_stack_limit) {
mark_stack_ptr = GC_signal_mark_stack_overflow(mark_stack_ptr);
}
mark_stack_ptr -> mse_start = (ptr_t)(addr + WORDSZ);
mark_stack_ptr -> mse_descr.w =
GC_MAKE_PROC(GC_typed_mark_proc_index, env + 1);
}
return(mark_stack_ptr);
}
/* Return the size of the object described by d. It would be faster to */
/* store this directly, or to compute it as part of */
/* GC_push_complex_descriptor, but hopefully it doesn't matter. */
STATIC word GC_descr_obj_size(complex_descriptor *d)
{
switch(d -> TAG) {
case LEAF_TAG:
return(d -> ld.ld_nelements * d -> ld.ld_size);
case ARRAY_TAG:
return(d -> ad.ad_nelements
* GC_descr_obj_size(d -> ad.ad_element_descr));
case SEQUENCE_TAG:
return(GC_descr_obj_size(d -> sd.sd_first)
+ GC_descr_obj_size(d -> sd.sd_second));
default:
ABORT_RET("Bad complex descriptor");
return 0;
}
}
/* Push descriptors for the object at addr with complex descriptor d */
/* onto the mark stack. Return 0 if the mark stack overflowed. */
STATIC mse * GC_push_complex_descriptor(word *addr, complex_descriptor *d,
mse *msp, mse *msl)
{
register ptr_t current = (ptr_t) addr;
register word nelements;
register word sz;
register word i;
switch(d -> TAG) {
case LEAF_TAG:
{
register GC_descr descr = d -> ld.ld_descriptor;
nelements = d -> ld.ld_nelements;
if (msl - msp <= (ptrdiff_t)nelements) return(0);
sz = d -> ld.ld_size;
for (i = 0; i < nelements; i++) {
msp++;
msp -> mse_start = current;
msp -> mse_descr.w = descr;
current += sz;
}
return(msp);
}
case ARRAY_TAG:
{
register complex_descriptor *descr = d -> ad.ad_element_descr;
nelements = d -> ad.ad_nelements;
sz = GC_descr_obj_size(descr);
for (i = 0; i < nelements; i++) {
msp = GC_push_complex_descriptor((word *)current, descr,
msp, msl);
if (msp == 0) return(0);
current += sz;
}
return(msp);
}
case SEQUENCE_TAG:
{
sz = GC_descr_obj_size(d -> sd.sd_first);
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_first,
msp, msl);
if (msp == 0) return(0);
current += sz;
msp = GC_push_complex_descriptor((word *)current, d -> sd.sd_second,
msp, msl);
return(msp);
}
default:
ABORT_RET("Bad complex descriptor");
return 0;
}
}
STATIC mse * GC_array_mark_proc(word * addr, mse * mark_stack_ptr,
mse * mark_stack_limit,
word env GC_ATTR_UNUSED)
{
hdr * hhdr = HDR(addr);
size_t sz = hhdr -> hb_sz;
size_t nwords = BYTES_TO_WORDS(sz);
complex_descriptor * descr = (complex_descriptor *)(addr[nwords-1]);
mse * orig_mark_stack_ptr = mark_stack_ptr;
mse * new_mark_stack_ptr;
if (descr == 0) {
/* Found a reference to a free list entry. Ignore it. */
return(orig_mark_stack_ptr);
}
/* In use counts were already updated when array descriptor was */
/* pushed. Here we only replace it by subobject descriptors, so */
/* no update is necessary. */
new_mark_stack_ptr = GC_push_complex_descriptor(addr, descr,
mark_stack_ptr,
mark_stack_limit-1);
if (new_mark_stack_ptr == 0) {
/* Doesn't fit. Conservatively push the whole array as a unit */
/* and request a mark stack expansion. */
/* This cannot cause a mark stack overflow, since it replaces */
/* the original array entry. */
GC_mark_stack_too_small = TRUE;
new_mark_stack_ptr = orig_mark_stack_ptr + 1;
new_mark_stack_ptr -> mse_start = (ptr_t)addr;
new_mark_stack_ptr -> mse_descr.w = sz | GC_DS_LENGTH;
} else {
/* Push descriptor itself */
new_mark_stack_ptr++;
new_mark_stack_ptr -> mse_start = (ptr_t)(addr + nwords - 1);
new_mark_stack_ptr -> mse_descr.w = sizeof(word) | GC_DS_LENGTH;
}
return new_mark_stack_ptr;
}
GC_API GC_descr GC_CALL GC_make_descriptor(const GC_word * bm, size_t len)
{
signed_word last_set_bit = len - 1;
GC_descr result;
signed_word i;
# define HIGH_BIT (((word)1) << (WORDSZ - 1))
if (!EXPECT(GC_explicit_typing_initialized, TRUE))
GC_init_explicit_typing();
while (last_set_bit >= 0 && !GC_get_bit(bm, last_set_bit))
last_set_bit--;
if (last_set_bit < 0) return(0 /* no pointers */);
# if ALIGNMENT == CPP_WORDSZ/8
{
register GC_bool all_bits_set = TRUE;
for (i = 0; i < last_set_bit; i++) {
if (!GC_get_bit(bm, i)) {
all_bits_set = FALSE;
break;
}
}
if (all_bits_set) {
/* An initial section contains all pointers. Use length descriptor. */
return (WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
}
}
# endif
if ((word)last_set_bit < BITMAP_BITS) {
/* Hopefully the common case. */
/* Build bitmap descriptor (with bits reversed) */
result = HIGH_BIT;
for (i = last_set_bit - 1; i >= 0; i--) {
result >>= 1;
if (GC_get_bit(bm, i)) result |= HIGH_BIT;
}
result |= GC_DS_BITMAP;
return(result);
} else {
signed_word index;
index = GC_add_ext_descriptor(bm, (word)last_set_bit+1);
if (index == -1) return(WORDS_TO_BYTES(last_set_bit+1) | GC_DS_LENGTH);
/* Out of memory: use conservative */
/* approximation. */
result = GC_MAKE_PROC(GC_typed_mark_proc_index, (word)index);
return result;
}
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_explicitly_typed(size_t lb,
GC_descr d)
{
ptr_t op;
size_t lg;
DCL_LOCK_STATE;
lb += TYPD_EXTRA_BYTES;
if(SMALL_OBJ(lb)) {
GC_DBG_COLLECT_AT_MALLOC(lb);
lg = GC_size_map[lb];
LOCK();
op = GC_eobjfreelist[lg];
if (EXPECT(0 == op, FALSE)) {
UNLOCK();
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_explicit_kind);
if (0 == op) return 0;
lg = GC_size_map[lb]; /* May have been uninitialized. */
} else {
GC_eobjfreelist[lg] = obj_link(op);
obj_link(op) = 0;
GC_bytes_allocd += GRANULES_TO_BYTES(lg);
UNLOCK();
}
((word *)op)[GRANULES_TO_WORDS(lg) - 1] = d;
} else {
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_explicit_kind);
if (op != NULL) {
lg = BYTES_TO_GRANULES(GC_size(op));
((word *)op)[GRANULES_TO_WORDS(lg) - 1] = d;
}
}
return((void *) op);
}
GC_API GC_ATTR_MALLOC void * GC_CALL
GC_malloc_explicitly_typed_ignore_off_page(size_t lb, GC_descr d)
{
ptr_t op;
size_t lg;
DCL_LOCK_STATE;
lb += TYPD_EXTRA_BYTES;
if (SMALL_OBJ(lb)) {
GC_DBG_COLLECT_AT_MALLOC(lb);
lg = GC_size_map[lb];
LOCK();
op = GC_eobjfreelist[lg];
if (EXPECT(0 == op, FALSE)) {
UNLOCK();
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
if (0 == op) return 0;
lg = GC_size_map[lb]; /* May have been uninitialized. */
} else {
GC_eobjfreelist[lg] = obj_link(op);
obj_link(op) = 0;
GC_bytes_allocd += GRANULES_TO_BYTES(lg);
UNLOCK();
}
((word *)op)[GRANULES_TO_WORDS(lg) - 1] = d;
} else {
op = (ptr_t)GENERAL_MALLOC_IOP(lb, GC_explicit_kind);
if (op != NULL) {
lg = BYTES_TO_GRANULES(GC_size(op));
((word *)op)[GRANULES_TO_WORDS(lg) - 1] = d;
}
}
return((void *) op);
}
GC_API GC_ATTR_MALLOC void * GC_CALL GC_calloc_explicitly_typed(size_t n,
size_t lb, GC_descr d)
{
ptr_t op;
size_t lg;
GC_descr simple_descr;
complex_descriptor *complex_descr;
register int descr_type;
struct LeafDescriptor leaf;
DCL_LOCK_STATE;
descr_type = GC_make_array_descriptor((word)n, (word)lb, d,
&simple_descr, &complex_descr, &leaf);
switch(descr_type) {
case NO_MEM: return(0);
case SIMPLE: return(GC_malloc_explicitly_typed(n*lb, simple_descr));
case LEAF:
lb *= n;
lb += sizeof(struct LeafDescriptor) + TYPD_EXTRA_BYTES;
break;
case COMPLEX:
lb *= n;
lb += TYPD_EXTRA_BYTES;
break;
}
if( SMALL_OBJ(lb) ) {
lg = GC_size_map[lb];
LOCK();
op = GC_arobjfreelist[lg];
if (EXPECT(0 == op, FALSE)) {
UNLOCK();
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_array_kind);
if (0 == op) return(0);
lg = GC_size_map[lb]; /* May have been uninitialized. */
} else {
GC_arobjfreelist[lg] = obj_link(op);
obj_link(op) = 0;
GC_bytes_allocd += GRANULES_TO_BYTES(lg);
UNLOCK();
}
} else {
op = (ptr_t)GENERAL_MALLOC((word)lb, GC_array_kind);
if (0 == op) return(0);
lg = BYTES_TO_GRANULES(GC_size(op));
}
if (descr_type == LEAF) {
/* Set up the descriptor inside the object itself. */
volatile struct LeafDescriptor * lp =
(struct LeafDescriptor *)
((word *)op
+ GRANULES_TO_WORDS(lg)
- (BYTES_TO_WORDS(sizeof(struct LeafDescriptor)) + 1));
lp -> ld_tag = LEAF_TAG;
lp -> ld_size = leaf.ld_size;
lp -> ld_nelements = leaf.ld_nelements;
lp -> ld_descriptor = leaf.ld_descriptor;
((volatile word *)op)[GRANULES_TO_WORDS(lg) - 1] = (word)lp;
} else {
# ifndef GC_NO_FINALIZATION
size_t lw = GRANULES_TO_WORDS(lg);
((word *)op)[lw - 1] = (word)complex_descr;
/* Make sure the descriptor is cleared once there is any danger */
/* it may have been collected. */
if (GC_general_register_disappearing_link((void * *)((word *)op+lw-1),
op) == GC_NO_MEMORY)
# endif
{
/* Couldn't register it due to lack of memory. Punt. */
/* This will probably fail too, but gives the recovery code */
/* a chance. */
return(GC_malloc(n*lb));
}
}
return((void *) op);
}