A clean and robust Pytorch implementation of Soft-Actor-Critic on continuous action space.
BipedalWalkerHardcore | LunarLanderContinuous |
---|---|
Other RL algorithms by Pytorch can be found here.
gymnasium==0.29.1
numpy==1.26.1
pytorch==2.1.0
python==3.11.5
python main.py
where the default enviroment is 'Pendulum'.
python main.py --EnvIdex 0 --render True --Loadmodel True --ModelIdex 10
which will render the 'Pendulum'.
If you want to train on different enviroments, just run
python main.py --EnvIdex 1
The --EnvIdex
can be set to be 0~5, where
'--EnvIdex 0' for 'Pendulum-v1'
'--EnvIdex 1' for 'LunarLanderContinuous-v2'
'--EnvIdex 2' for 'Humanoid-v4'
'--EnvIdex 3' for 'HalfCheetah-v4'
'--EnvIdex 4' for 'BipedalWalker-v3'
'--EnvIdex 5' for 'BipedalWalkerHardcore-v3'
Note: if you want train on BipedalWalker, BipedalWalkerHardcore, or LunarLanderContinuous, you need to install box2d-py first. You can install box2d-py via:
pip install gymnasium[box2d]
if you want train on Humanoid or HalfCheetah, you need to install MuJoCo first. You can install MuJoCo via:
pip install mujoco
pip install gymnasium[mujoco]
You can use the tensorboard to record anv visualize the training curve.
- Installation (please make sure PyTorch is installed already):
pip install tensorboard
pip install packaging
- Record (the training curves will be saved at '\runs'):
python main.py --write True
- Visualization:
tensorboard --logdir runs
For more details of Hyperparameter Setting, please check 'main.py'
All the experiments are trained with same hyperparameters (see main.py).