Skip to content

Latest commit

 

History

History

stepper4

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


Stepper 4 Click

Stepper 4 Click is a very versatile bipolar stepping motor driver. It features TB67S269FTG IC, fabricated with the BiCD process, allowing the Click board™ to handle significant voltage and current levels up to 35V and 1.2A. This IC has the integrated translator section, used to simplify the control: using simple step control inputs from the host MCU, the stepper motor can be driven in both directions, with the predetermined step sizes from the full step, up to 1/32 step.

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2024.
  • Type : GPIO type

Software Support

We provide a library for the Stepper 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 4 Click driver.

Standard key functions :

  • stepper4_cfg_setup Config Object Initialization function.
void stepper4_cfg_setup ( stepper4_cfg_t *cfg );
  • stepper4_init Initialization function.
err_t stepper4_init ( stepper4_t *ctx, stepper4_cfg_t *cfg );
  • stepper4_default_cfg Click Default Configuration function.
void stepper4_default_cfg ( stepper4_t *ctx );

Example key functions :

  • stepper4_set_direction This function sets the motor direction by setting the DIR pin logic state.
void stepper4_set_direction ( stepper4_t *ctx, uint8_t dir );
  • stepper4_drive_motor This function drives the motor for the specific number of steps at the selected speed.
void stepper4_drive_motor ( stepper4_t *ctx, uint32_t steps, uint8_t speed );
  • stepper4_reset_device This function resets the device by toggling the RST pin.
void stepper4_reset_device ( stepper4_t *ctx );

Example Description

This example demonstrates the use of the Stepper 4 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper4_cfg_t stepper4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper4_cfg_setup( &stepper4_cfg );
    STEPPER4_MAP_MIKROBUS( stepper4_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == stepper4_init( &stepper4, &stepper4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    stepper4_default_cfg ( &stepper4 );
    
    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 steps and then counter-clockiwse for 100 steps with 2 seconds delay before changing the direction. Each step will be logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 steps clockwise \r\n\n" );
    stepper4_set_direction ( &stepper4, STEPPER4_DIR_CW );
    stepper4_drive_motor ( &stepper4, 200, STEPPER4_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    
    log_printf ( &logger, " Move 100 steps counter-clockwise \r\n\n" );
    stepper4_set_direction ( &stepper4, STEPPER4_DIR_CCW );
    stepper4_drive_motor ( &stepper4, 100, STEPPER4_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.