Skip to content

Latest commit

 

History

History

relay4

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


Relay 4 Click

Relay 4 Click is a compact add-on board with a general-purpose relay that any host MCU can control. This board features the J1031C3VDC, high-current single-pole double-throw (SPDT) signal relay from CIT Relay and Switch. Highly sensitive, the J1031C3VDC offers a low coil power consumption in a small, lightweight package with PC pin mounting. It comes with a dimension of 12.5x7.5x10 millimetre (LxWxH) and a 1C contact arrangement with a coil voltage of 3VDC, providing a switching voltage of 125VAC/60VDC maximum.

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jan 2023.
  • Type : GPIO type

Software Support

We provide a library for the Relay 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Relay 4 Click driver.

Standard key functions :

  • relay4_cfg_setup Config Object Initialization function.
void relay4_cfg_setup ( relay4_cfg_t *cfg );
  • relay4_init Initialization function.
err_t relay4_init ( relay4_t *ctx, relay4_cfg_t *cfg );

Example key functions :

  • relay4_set_relay1_open This function sets the relay 1 to normally open state by setting the RL1 pin to low logic level.
void relay4_set_relay1_open ( relay4_t *ctx );
  • relay4_set_relay1_close This function sets the relay 1 to normally close state by setting the RL1 pin to high logic level.
void relay4_set_relay1_close ( relay4_t *ctx );
  • relay4_set_relay2_open This function sets the relay 2 to normally open state by setting the RL2 pin to low logic level.
void relay4_set_relay2_open ( relay4_t *ctx );

Example Description

This example demonstrates the use of Relay 4 Click board by toggling the relays state.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    relay4_cfg_t relay4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    relay4_cfg_setup( &relay4_cfg );
    RELAY4_MAP_MIKROBUS( relay4_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == relay4_init( &relay4, &relay4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}

Application Task

Switches the relays 1 and 2 state every 5 seconds and displays the state on the USB UART.

void application_task ( void )
{
    relay4_set_relay1_open ( &relay4 );
    log_printf( &logger, " Relay 1 set to normally open state\r\n" );
    relay4_set_relay2_close ( &relay4 );
    log_printf( &logger, " Relay 2 set to normally close state\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    relay4_set_relay1_close ( &relay4 );
    log_printf( &logger, " Relay 1 set to normally close state\r\n" );
    relay4_set_relay2_open ( &relay4 );
    log_printf( &logger, " Relay 2 set to normally open state\r\n\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Relay4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.