Skip to content

Latest commit

 

History

History

relay

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


Relay Click

Relay Click is a dual relay Click board, which can be operated by the host MCU. This Click board offers an elegant and easy solution for controlling a wide range of high power applications.

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : GPIO type

Software Support

We provide a library for the Relay Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Relay Click driver.

Standard key functions :

  • Config Object Initialization function.

void relay_cfg_setup ( relay_cfg_t *cfg );

  • Initialization function.

RELAY_RETVAL relay_init ( relay_t *ctx, relay_cfg_t *cfg );

  • Click Default Configuration function.

void relay_default_cfg ( relay_t *ctx );

Example key functions :

  • Relay set state

void relay_set_state ( relay_t *ctx, uint8_t relay, uint8_t state );

Examples Description

Demo application is used to shows basic controls Relay Click

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    relay_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    relay_cfg_setup( &cfg );
    RELAY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    relay_init( &relay, &cfg );
    
    relay_default_cfg ( &relay );
    Delay_ms ( 1000 );
    Delay_ms ( 500 );
}

Application Task

Alternately sets relays to ON-OFF state...

void application_task ( void )
{
    uint8_t cnt;
    
    //  Task implementation.
    
    for ( cnt = 1; cnt <= 2; cnt++)
    {
        log_info( &logger, "*** Relay %d state is ON \r\n", cnt);
        relay_set_state( &relay, cnt, RELAY_STATE_ON );
        Delay_ms ( 1000 );
        log_info( &logger, "*** Relay %d state is OFF \r\n", cnt);
        relay_set_state( &relay, cnt, RELAY_STATE_OFF );
        Delay_ms ( 200 );
    }
    
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Relay

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.