\mainpage Main Page
Proximity 18 Click is a compact add-on board that contains a close-range proximity sensing solution. This board features the VCNL3036X01, a high-resolution digital proximity sensor from Vishay Semiconductors. Besides the proximity sensor, the VCNL3036X01 also integrates a mux and a driver for three external LEDs, which are located near the chip on the board, photodiodes, amplifiers, and analog to digital converting circuits into a single chip by CMOS process. It allows absolute distance measurement, whatever the target color and reflectance, providing an accurate range of up to 50cm.
- Author : Stefan Filipovic
- Date : Oct 2022.
- Type : I2C type
We provide a library for the Proximity 18 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Proximity 18 Click driver.
proximity18_cfg_setup
Config Object Initialization function.
void proximity18_cfg_setup ( proximity18_cfg_t *cfg );
proximity18_init
Initialization function.
err_t proximity18_init ( proximity18_t *ctx, proximity18_cfg_t *cfg );
proximity18_default_cfg
Click Default Configuration function.
err_t proximity18_default_cfg ( proximity18_t *ctx );
proximity18_start_measurement
This function starts the measurement by setting the one time trigger bit in the PS_CONF3_MS register.
err_t proximity18_start_measurement ( proximity18_t *ctx );
proximity18_wait_for_data_ready
This function waits for the MPX data ready interrupt flag.
err_t proximity18_wait_for_data_ready ( proximity18_t *ctx );
proximity18_read_proximity
This function reads the proximity data from all 3 sensors.
err_t proximity18_read_proximity ( proximity18_t *ctx, uint16_t *ps1_data, uint16_t *ps2_data, uint16_t *ps3_data );
This example demonstrates the use of Proximity 18 Click board by reading and displaying the proximity data on the USB UART.
The demo application is composed of two sections :
Initializes the driver and logger, and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
proximity18_cfg_t proximity18_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
proximity18_cfg_setup( &proximity18_cfg );
PROXIMITY18_MAP_MIKROBUS( proximity18_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == proximity18_init( &proximity18, &proximity18_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( PROXIMITY18_ERROR == proximity18_default_cfg ( &proximity18 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Reads the proximity data from 3 sensors in a multiplex mode and displays it on the USB UART approximately once per second. The higher the proximity value, the closer the detected object is.
void application_task ( void )
{
uint16_t ps1_data, ps2_data, ps3_data;
if ( PROXIMITY18_ERROR == proximity18_start_measurement ( &proximity18 ) )
{
log_error ( &logger, " Start measurement." );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
if ( PROXIMITY18_ERROR == proximity18_wait_for_data_ready ( &proximity18 ) )
{
log_error ( &logger, " Wait for data ready." );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
if ( PROXIMITY18_ERROR == proximity18_read_proximity ( &proximity18, &ps1_data, &ps2_data, &ps3_data ) )
{
log_error ( &logger, " Read proximity." );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
else
{
log_printf ( &logger, " PS1 data: %u\r\n", ps1_data );
log_printf ( &logger, " PS2 data: %u\r\n", ps2_data );
log_printf ( &logger, " PS3 data: %u\r\n\n", ps3_data );
}
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.Proximity18
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.