\mainpage Main Page
Plug&Trust Click is a compact add-on board that contains a ready-to-use IoT secure element solution.
- Author : Luka Filipovic
- Date : Feb 2021.
- Type : I2C type
We provide a library for the PlugnTrust Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
This library contains API for PlugnTrust Click driver.
plugntrust_cfg_setup
Config Object Initialization function.
void plugntrust_cfg_setup ( plugntrust_cfg_t *cfg );
plugntrust_init
Initialization function.
err_t plugntrust_init ( plugntrust_t *ctx, plugntrust_cfg_t *cfg );
plugntrust_default_cfg
Click Default Configuration function.
err_t plugntrust_default_cfg ( plugntrust_t *ctx );
plugntrust_apdu_transfer
Write-Read frame data function.
err_t plugntrust_apdu_transfer ( plugntrust_t *ctx, plugntrust_frame_data_t *frame_data );
plugntrust_select_card_manager
Select card manager.
err_t plugntrust_select_card_manager ( plugntrust_t *ctx, uint8_t rsp, uint8_t *cardmanager_rsp, uint8_t *cardmanager_rsp_len );
plugntrust_select_applet
Selects Clicks Applet and returns info that device sends back to host.
err_t plugntrust_select_applet ( plugntrust_t *ctx, uint8_t ns_encode, plugntrust_version_info_t *ver_info );
This application is showcasing basic functionality of Plug&Trust click board. It gets identify data from device, selects card manager and applet. Then checks free memory, reads all objects and deletes not reserved ones. After that showcases a few of functionality: Generating random data, Creating, reading and deleteing binary objects, Creating AES symmetrical key and cipher with it; In the end it is showcasing funcionality in the endless loop.
The demo application is composed of two sections :
At the start it sets comunication interface from default configuration[I2C]. Reads indetifing data from device, and then selects Card manager and applet. After that it reads free presistant memory, reads all objects and deletes objects that are not reserved by the Applet. Then it generates 2 byte of random data, and gets the version information from the Applet. Thtas followed up with creating binary object and 'MikroE' data is wrriten in it. Then its checked it object is created, and reads data back, in the end its deleted and checked if it still exists. Finally it creates 128AES key (16bytes), and then it encrypts and then decrypts data with that key, and in the end it deletes that key object.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
plugntrust_cfg_t plugntrust_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
plugntrust_cfg_setup( &plugntrust_cfg );
PLUGNTRUST_MAP_MIKROBUS( plugntrust_cfg, MIKROBUS_1 );
err_t init_flag = plugntrust_init( &plugntrust, &plugntrust_cfg );
if ( init_flag == I2C_MASTER_ERROR )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
frame_data.apdu = &apdu_data;
plugntrust_default_cfg ( &plugntrust );
if ( PLUGNTRUST_INTERFACE_ISO14443 == plugntrust.interface )
{
log_info( &logger, " ISO14443 Interface active..." );
for ( ; ; );
}
soft_reset( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
get_data_identify( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
select_card_manger( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
select_applet( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
check_free_memory( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
list_and_delete_objects( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
get_random( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
read_uid_object( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
get_version( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
create_check_delete( );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
aes_cipher( );
log_info( &logger, " Application Task " );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
It generates 16bytes of data, writes it in binary object and then reads it and logs it. Then creates AES key and encrypts that random data with it, and then decrypts it. In the end it deletes both AES key object and binary object thats created at the start of task.
void application_task ( void )
{
#define DATA_LEN 16
static uint8_t aes_value[ DATA_LEN ] = { 0x40, 0x41, 0x42, 0x43,0x44, 0x45, 0x46, 0x47,
0x48, 0x49, 0x4A, 0x4B,0x4C, 0x4D, 0x4E, 0x4F };
static uint32_t binary_id = 0xBBBBBBBBul;
static uint32_t aes_id = 0xCCCCCCCCul;
uint8_t random_data[ DATA_LEN ] = { 0 };
uint8_t read_data[ DATA_LEN ] = { 0 };
uint8_t encrypted_data[ DATA_LEN ] = { 0 };
uint32_t read_len = DATA_LEN;
if ( PLUGNTRUST_OK == plugntrust_get_random_numbers( &plugntrust, random_data, DATA_LEN ) )
{
log_printf( &logger, " > Generated random data: 0x" );
log_buf_hex( random_data, DATA_LEN );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Random" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( PLUGNTRUST_OBJECT_DOESNT_EXIST == plugntrust_check_object_exist( &plugntrust, binary_id ) )
{
log_printf( &logger, " Write random data to binary object...\r\n" );
if ( PLUGNTRUST_OK != plugntrust_write_binary_object( &plugntrust, binary_id, 0, DATA_LEN, random_data ) )
{
log_error( &logger, " Write Binary" );
}
else
{
log_info( &logger, " Status OK" );
}
}
else
{
log_error( &logger, " Binary object already exist" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( PLUGNTRUST_OBJECT_DOES_EXISTS == plugntrust_check_object_exist( &plugntrust, binary_id ) )
{
if ( PLUGNTRUST_OK == plugntrust_read_object( &plugntrust, binary_id, 0, 0, read_data, &read_len ) )
{
log_printf( &logger, " > Read data from binary object: 0x" );
log_buf_hex( read_data, read_len );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Read binray object" );
}
}
else
{
log_error( &logger, " Binary object doesn't exist" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Create AES key...\r\n" );
create_128_aes_key( aes_id, aes_value );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( PLUGNTRUST_OK == cipher_data_with_aes_key( aes_id, PLUGNTRUST_P2_ENCRYPT_ONESHOT, read_data, encrypted_data ) )
{
log_printf( &logger, " > Encrypted data: 0x" );
log_buf_hex( encrypted_data, DATA_LEN );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Encrypting data" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
if ( PLUGNTRUST_OK == cipher_data_with_aes_key( aes_id, PLUGNTRUST_P2_DECRYPT_ONESHOT, encrypted_data, read_data ) )
{
log_printf( &logger, " > Decrypted data: 0x" );
log_buf_hex( read_data, DATA_LEN );
log_printf( &logger, "\r\n" );
}
else
{
log_error( &logger, " Decrypting data" );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_printf( &logger, " Delete Binary and AES object...\r\n" );
if ( ( PLUGNTRUST_OK != plugntrust_delete_object( &plugntrust, binary_id ) ) || ( PLUGNTRUST_OK != plugntrust_delete_object( &plugntrust, aes_id ) ) )
{
log_error( &logger, " Deleting objects" );
}
log_printf( &logger, "*****************************************************************************\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
For more informations and explanations refer to documents from NXP->AN12413 and UM11225.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on mikroE github account.
Other mikroE Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.PlugnTrust
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all Mikroelektronika compilers.