\mainpage Main Page
Hydro Probe Click is a capacitive soil moisture sensor based on capacitive changes that are used to detect the volumetric water content in the soil. Water detection is achieved by using function oscillator MIC1557 and ADC converter MCP3221 from Microchip, which allow you to convert moisture presents to the digital value. Compared to resistant soil moisture sensors, its capacitive style reduces electrode erosion making it corrosion resistant and a better choice for applications such as soil moisture detection and automatic plant watering.
- Author : MikroE Team
- Date : Jul 2020.
- Type : I2C type
We provide a library for the HydroProbe Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for HydroProbe Click driver.
- Config Object Initialization function.
void hydroprobe_cfg_setup ( hydroprobe_cfg_t *cfg );
- Initialization function.
HYDROPROBE_RETVAL hydroprobe_init ( hydroprobe_t *ctx, hydroprobe_cfg_t *cfg );
- Get average value function
uint16_t hydroprobe_avg_val ( hydroprobe_t *ctx );
- Get minimum value function
uint16_t hydroprobe_min_val ( hydroprobe_t *ctx );
- Get Relative humidity of the environment function
uint8_t hydroprobe_rel_env_hum ( hydroprobe_t *ctx, uint16_t dry_val, uint16_t wet_val );
This demo application measures moisture.
The demo application is composed of two sections :
Initalizes I2C driver, prerforms calibration and makes an initial log.
void application_init ( void )
{
log_cfg_t log_cfg;
hydroprobe_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
hydroprobe_cfg_setup( &cfg );
HYDROPROBE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
hydroprobe_init( &hydroprobe, &cfg );
Delay_ms ( 100 );
log_printf( &logger, "---------------------\r\n" );
log_printf( &logger, " Hydro Probe Click \r\n" );
log_printf( &logger, "---------------------\r\n" );
hydroprobe_calib( );
log_printf( &logger, " Calibrated \r\n" );
log_printf( &logger, "---------------------\r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
This example shows the capabilities of the Hydro Probe Click by measuring environment moisture content and displaying it in percent via USB UART.
void application_task ( void )
{
humy_val = hydroprobe_rel_env_hum( &hydroprobe, dry_val, wet_val );
log_printf( &logger, "Environment moisture content: %d %% \r\n ", ( uint16_t ) humy_val );
log_printf( &logger, "------------------------------\r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.HydroProbe
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.